pyzebra/pyzebra/app/panel_hdf_viewer.py

660 lines
21 KiB
Python

import base64
import io
import os
import numpy as np
from bokeh.layouts import column, gridplot, row
from bokeh.models import (
BasicTicker,
BoxEditTool,
BoxZoomTool,
Button,
ColumnDataSource,
DataRange1d,
Div,
FileInput,
Grid,
HoverTool,
Image,
Line,
LinearAxis,
LinearColorMapper,
Panel,
PanTool,
Plot,
RadioButtonGroup,
Range1d,
Rect,
ResetTool,
Select,
Spacer,
Spinner,
TextAreaInput,
TextInput,
Title,
Toggle,
WheelZoomTool,
)
from bokeh.palettes import Cividis256, Greys256, Plasma256 # pylint: disable=E0611
import pyzebra
IMAGE_W = 256
IMAGE_H = 128
IMAGE_PLOT_W = int(IMAGE_W * 2.5)
IMAGE_PLOT_H = int(IMAGE_H * 2.5)
PROPOSAL_PATH = "/afs/psi.ch/project/sinqdata/2020/zebra/"
def create():
det_data = {}
roi_selection = {}
def proposal_textinput_callback(_attr, _old, new):
full_proposal_path = os.path.join(PROPOSAL_PATH, new.strip())
file_list = []
for file in os.listdir(full_proposal_path):
if file.endswith(".hdf"):
file_list.append((os.path.join(full_proposal_path, file), file))
filelist.options = file_list
filelist.value = file_list[0][0]
proposal_textinput = TextInput(title="Enter proposal number:", default_size=145)
proposal_textinput.on_change("value", proposal_textinput_callback)
def upload_button_callback(_attr, _old, new):
with io.StringIO(base64.b64decode(new).decode()) as file:
h5meta_list = pyzebra.parse_h5meta(file)
file_list = h5meta_list["filelist"]
filelist.options = [(entry, os.path.basename(entry)) for entry in file_list]
filelist.value = file_list[0]
upload_div = Div(text="or upload .cami file:", margin=(5, 5, 0, 5))
upload_button = FileInput(accept=".cami")
upload_button.on_change("value", upload_button_callback)
def update_image(index=None):
if index is None:
index = index_spinner.value
current_image = det_data["data"][index]
proj_v_line_source.data.update(
x=np.arange(0, IMAGE_W) + 0.5, y=np.mean(current_image, axis=0)
)
proj_h_line_source.data.update(
x=np.mean(current_image, axis=1), y=np.arange(0, IMAGE_H) + 0.5
)
image_source.data.update(
h=[np.zeros((1, 1))], k=[np.zeros((1, 1))], l=[np.zeros((1, 1))],
)
image_source.data.update(image=[current_image])
if auto_toggle.active:
im_min = np.min(current_image)
im_max = np.max(current_image)
display_min_spinner.value = im_min
display_max_spinner.value = im_max
image_glyph.color_mapper.low = im_min
image_glyph.color_mapper.high = im_max
if "mf" in det_data:
mf_spinner.value = det_data["mf"][index]
else:
mf_spinner.value = None
if "temp" in det_data:
temp_spinner.value = det_data["temp"][index]
else:
temp_spinner.value = None
gamma, nu = calculate_pol(det_data, index)
omega = np.ones((IMAGE_H, IMAGE_W)) * det_data["omega"][index]
image_source.data.update(gamma=[gamma], nu=[nu], omega=[omega])
def update_overview_plot():
h5_data = det_data["data"]
n_im, n_y, n_x = h5_data.shape
overview_x = np.mean(h5_data, axis=1)
overview_y = np.mean(h5_data, axis=2)
overview_plot_x_image_source.data.update(image=[overview_x], dw=[n_x], dh=[n_im])
overview_plot_y_image_source.data.update(image=[overview_y], dw=[n_y], dh=[n_im])
if proj_auto_toggle.active:
im_min = min(np.min(overview_x), np.min(overview_y))
im_max = max(np.max(overview_x), np.max(overview_y))
proj_display_min_spinner.value = im_min
proj_display_max_spinner.value = im_max
overview_plot_x_image_glyph.color_mapper.low = im_min
overview_plot_y_image_glyph.color_mapper.low = im_min
overview_plot_x_image_glyph.color_mapper.high = im_max
overview_plot_y_image_glyph.color_mapper.high = im_max
frame_range.start = 0
frame_range.end = n_im
frame_range.reset_start = 0
frame_range.reset_end = n_im
frame_range.bounds = (0, n_im)
scan_motor = det_data["scan_motor"]
overview_plot_y.axis[1].axis_label = f"Scanning motor, {scan_motor}"
var = det_data[scan_motor]
var_start = var[0]
var_end = var[-1] + (var[-1] - var[0]) / (n_im - 1)
scanning_motor_range.start = var_start
scanning_motor_range.end = var_end
scanning_motor_range.reset_start = var_start
scanning_motor_range.reset_end = var_end
scanning_motor_range.bounds = (var_start, var_end)
def filelist_callback(_attr, _old, new):
nonlocal det_data
det_data = pyzebra.read_detector_data(new)
index_spinner.value = 0
index_spinner.high = det_data["data"].shape[0] - 1
zebra_mode = det_data["zebra_mode"]
if zebra_mode == "nb":
geometry_textinput.value = "normal beam"
else: # zebra_mode == "bi"
geometry_textinput.value = "bisecting"
update_image(0)
update_overview_plot()
filelist = Select(title="Available .hdf files:")
filelist.on_change("value", filelist_callback)
def index_spinner_callback(_attr, _old, new):
update_image(new)
index_spinner = Spinner(title="Image index:", value=0, low=0)
index_spinner.on_change("value", index_spinner_callback)
plot = Plot(
x_range=Range1d(0, IMAGE_W, bounds=(0, IMAGE_W)),
y_range=Range1d(0, IMAGE_H, bounds=(0, IMAGE_H)),
plot_height=IMAGE_PLOT_H,
plot_width=IMAGE_PLOT_W,
toolbar_location="left",
)
# ---- tools
plot.toolbar.logo = None
# ---- axes
plot.add_layout(LinearAxis(), place="above")
plot.add_layout(LinearAxis(major_label_orientation="vertical"), place="right")
# ---- grid lines
plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
# ---- rgba image glyph
image_source = ColumnDataSource(
dict(
image=[np.zeros((IMAGE_H, IMAGE_W), dtype="float32")],
h=[np.zeros((1, 1))],
k=[np.zeros((1, 1))],
l=[np.zeros((1, 1))],
gamma=[np.zeros((1, 1))],
nu=[np.zeros((1, 1))],
omega=[np.zeros((1, 1))],
x=[0],
y=[0],
dw=[IMAGE_W],
dh=[IMAGE_H],
)
)
h_glyph = Image(image="h", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
k_glyph = Image(image="k", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
l_glyph = Image(image="l", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
gamma_glyph = Image(image="gamma", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
nu_glyph = Image(image="nu", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
omega_glyph = Image(image="omega", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
plot.add_glyph(image_source, h_glyph)
plot.add_glyph(image_source, k_glyph)
plot.add_glyph(image_source, l_glyph)
plot.add_glyph(image_source, gamma_glyph)
plot.add_glyph(image_source, nu_glyph)
plot.add_glyph(image_source, omega_glyph)
image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
plot.add_glyph(image_source, image_glyph, name="image_glyph")
# ---- projections
proj_v = Plot(
x_range=plot.x_range,
y_range=DataRange1d(),
plot_height=150,
plot_width=IMAGE_PLOT_W,
toolbar_location=None,
)
proj_v.add_layout(LinearAxis(major_label_orientation="vertical"), place="right")
proj_v.add_layout(LinearAxis(major_label_text_font_size="0pt"), place="below")
proj_v.add_layout(Grid(dimension=0, ticker=BasicTicker()))
proj_v.add_layout(Grid(dimension=1, ticker=BasicTicker()))
proj_v_line_source = ColumnDataSource(dict(x=[], y=[]))
proj_v.add_glyph(proj_v_line_source, Line(x="x", y="y", line_color="steelblue"))
proj_h = Plot(
x_range=DataRange1d(),
y_range=plot.y_range,
plot_height=IMAGE_PLOT_H,
plot_width=150,
toolbar_location=None,
)
proj_h.add_layout(LinearAxis(), place="above")
proj_h.add_layout(LinearAxis(major_label_text_font_size="0pt"), place="left")
proj_h.add_layout(Grid(dimension=0, ticker=BasicTicker()))
proj_h.add_layout(Grid(dimension=1, ticker=BasicTicker()))
proj_h_line_source = ColumnDataSource(dict(x=[], y=[]))
proj_h.add_glyph(proj_h_line_source, Line(x="x", y="y", line_color="steelblue"))
# add tools
hovertool = HoverTool(
tooltips=[
("intensity", "@image"),
("gamma", "@gamma"),
("nu", "@nu"),
("omega", "@omega"),
("h", "@h"),
("k", "@k"),
("l", "@l"),
]
)
box_edit_source = ColumnDataSource(dict(x=[], y=[], width=[], height=[]))
box_edit_glyph = Rect(
x="x", y="y", width="width", height="height", fill_alpha=0, line_color="red"
)
box_edit_renderer = plot.add_glyph(box_edit_source, box_edit_glyph)
boxedittool = BoxEditTool(renderers=[box_edit_renderer], num_objects=1)
def box_edit_callback(_attr, _old, new):
if new["x"]:
h5_data = det_data["data"]
x_val = np.arange(h5_data.shape[0])
left = int(np.floor(new["x"][0]))
right = int(np.ceil(new["x"][0] + new["width"][0]))
bottom = int(np.floor(new["y"][0]))
top = int(np.ceil(new["y"][0] + new["height"][0]))
y_val = np.sum(h5_data[:, bottom:top, left:right], axis=(1, 2))
else:
x_val = []
y_val = []
roi_avg_plot_line_source.data.update(x=x_val, y=y_val)
box_edit_source.on_change("data", box_edit_callback)
wheelzoomtool = WheelZoomTool(maintain_focus=False)
plot.add_tools(
PanTool(), BoxZoomTool(), wheelzoomtool, ResetTool(), hovertool, boxedittool,
)
plot.toolbar.active_scroll = wheelzoomtool
# shared frame ranges
frame_range = Range1d(0, 1, bounds=(0, 1))
scanning_motor_range = Range1d(0, 1, bounds=(0, 1))
det_x_range = Range1d(0, IMAGE_W, bounds=(0, IMAGE_W))
overview_plot_x = Plot(
title=Title(text="Projections on X-axis"),
x_range=det_x_range,
y_range=frame_range,
extra_y_ranges={"scanning_motor": scanning_motor_range},
plot_height=400,
plot_width=IMAGE_PLOT_W,
)
# ---- tools
wheelzoomtool = WheelZoomTool(maintain_focus=False)
overview_plot_x.toolbar.logo = None
overview_plot_x.add_tools(
PanTool(), BoxZoomTool(), wheelzoomtool, ResetTool(),
)
overview_plot_x.toolbar.active_scroll = wheelzoomtool
# ---- axes
overview_plot_x.add_layout(LinearAxis(axis_label="Coordinate X, pix"), place="below")
overview_plot_x.add_layout(
LinearAxis(axis_label="Frame", major_label_orientation="vertical"), place="left"
)
# ---- grid lines
overview_plot_x.add_layout(Grid(dimension=0, ticker=BasicTicker()))
overview_plot_x.add_layout(Grid(dimension=1, ticker=BasicTicker()))
# ---- rgba image glyph
overview_plot_x_image_source = ColumnDataSource(
dict(image=[np.zeros((1, 1), dtype="float32")], x=[0], y=[0], dw=[IMAGE_W], dh=[1])
)
overview_plot_x_image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
overview_plot_x.add_glyph(
overview_plot_x_image_source, overview_plot_x_image_glyph, name="image_glyph"
)
det_y_range = Range1d(0, IMAGE_H, bounds=(0, IMAGE_H))
overview_plot_y = Plot(
title=Title(text="Projections on Y-axis"),
x_range=det_y_range,
y_range=frame_range,
extra_y_ranges={"scanning_motor": scanning_motor_range},
plot_height=400,
plot_width=IMAGE_PLOT_H,
)
# ---- tools
wheelzoomtool = WheelZoomTool(maintain_focus=False)
overview_plot_y.toolbar.logo = None
overview_plot_y.add_tools(
PanTool(), BoxZoomTool(), wheelzoomtool, ResetTool(),
)
overview_plot_y.toolbar.active_scroll = wheelzoomtool
# ---- axes
overview_plot_y.add_layout(LinearAxis(axis_label="Coordinate Y, pix"), place="below")
overview_plot_y.add_layout(
LinearAxis(
y_range_name="scanning_motor",
axis_label="Scanning motor",
major_label_orientation="vertical",
),
place="right",
)
# ---- grid lines
overview_plot_y.add_layout(Grid(dimension=0, ticker=BasicTicker()))
overview_plot_y.add_layout(Grid(dimension=1, ticker=BasicTicker()))
# ---- rgba image glyph
overview_plot_y_image_source = ColumnDataSource(
dict(image=[np.zeros((1, 1), dtype="float32")], x=[0], y=[0], dw=[IMAGE_H], dh=[1])
)
overview_plot_y_image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
overview_plot_y.add_glyph(
overview_plot_y_image_source, overview_plot_y_image_glyph, name="image_glyph"
)
roi_avg_plot = Plot(
x_range=DataRange1d(),
y_range=DataRange1d(),
plot_height=200,
plot_width=IMAGE_PLOT_W,
toolbar_location="left",
)
# ---- tools
roi_avg_plot.toolbar.logo = None
# ---- axes
roi_avg_plot.add_layout(LinearAxis(), place="below")
roi_avg_plot.add_layout(LinearAxis(major_label_orientation="vertical"), place="left")
# ---- grid lines
roi_avg_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
roi_avg_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
roi_avg_plot_line_source = ColumnDataSource(dict(x=[], y=[]))
roi_avg_plot.add_glyph(roi_avg_plot_line_source, Line(x="x", y="y", line_color="steelblue"))
cmap_dict = {
"gray": Greys256,
"gray_reversed": Greys256[::-1],
"plasma": Plasma256,
"cividis": Cividis256,
}
def colormap_callback(_attr, _old, new):
image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
overview_plot_x_image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
overview_plot_y_image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
colormap = Select(title="Colormap:", options=list(cmap_dict.keys()), default_size=145)
colormap.on_change("value", colormap_callback)
colormap.value = "plasma"
STEP = 1
# ---- colormap auto toggle button
def auto_toggle_callback(state):
if state:
display_min_spinner.disabled = True
display_max_spinner.disabled = True
else:
display_min_spinner.disabled = False
display_max_spinner.disabled = False
update_image()
auto_toggle = Toggle(
label="Main Auto Range", active=True, button_type="default", default_size=125
)
auto_toggle.on_click(auto_toggle_callback)
# ---- colormap display max value
def display_max_spinner_callback(_attr, _old_value, new_value):
display_min_spinner.high = new_value - STEP
image_glyph.color_mapper.high = new_value
display_max_spinner = Spinner(
title="Max Value:",
low=0 + STEP,
value=1,
step=STEP,
disabled=auto_toggle.active,
default_size=80,
)
display_max_spinner.on_change("value", display_max_spinner_callback)
# ---- colormap display min value
def display_min_spinner_callback(_attr, _old_value, new_value):
display_max_spinner.low = new_value + STEP
image_glyph.color_mapper.low = new_value
display_min_spinner = Spinner(
title="Min Value:",
low=0,
high=1 - STEP,
value=0,
step=STEP,
disabled=auto_toggle.active,
default_size=80,
)
display_min_spinner.on_change("value", display_min_spinner_callback)
PROJ_STEP = 0.1
# ---- proj colormap auto toggle button
def proj_auto_toggle_callback(state):
if state:
proj_display_min_spinner.disabled = True
proj_display_max_spinner.disabled = True
else:
proj_display_min_spinner.disabled = False
proj_display_max_spinner.disabled = False
update_overview_plot()
proj_auto_toggle = Toggle(
label="Proj Auto Range", active=True, button_type="default", default_size=125
)
proj_auto_toggle.on_click(proj_auto_toggle_callback)
# ---- proj colormap display max value
def proj_display_max_spinner_callback(_attr, _old_value, new_value):
proj_display_min_spinner.high = new_value - PROJ_STEP
overview_plot_x_image_glyph.color_mapper.high = new_value
overview_plot_y_image_glyph.color_mapper.high = new_value
proj_display_max_spinner = Spinner(
title="Max Value:",
low=0 + PROJ_STEP,
value=1,
step=PROJ_STEP,
disabled=proj_auto_toggle.active,
default_size=80,
)
proj_display_max_spinner.on_change("value", proj_display_max_spinner_callback)
# ---- proj colormap display min value
def proj_display_min_spinner_callback(_attr, _old_value, new_value):
proj_display_max_spinner.low = new_value + PROJ_STEP
overview_plot_x_image_glyph.color_mapper.low = new_value
overview_plot_y_image_glyph.color_mapper.low = new_value
proj_display_min_spinner = Spinner(
title="Min Value:",
low=0,
high=1 - PROJ_STEP,
value=0,
step=PROJ_STEP,
disabled=proj_auto_toggle.active,
default_size=80,
)
proj_display_min_spinner.on_change("value", proj_display_min_spinner_callback)
def hkl_button_callback():
index = index_spinner.value
h, k, l = calculate_hkl(det_data, index)
image_source.data.update(h=[h], k=[k], l=[l])
hkl_button = Button(label="Calculate hkl (slow)")
hkl_button.on_click(hkl_button_callback)
selection_list = TextAreaInput(rows=7)
def selection_button_callback():
nonlocal roi_selection
selection = [
int(np.floor(det_x_range.start)),
int(np.ceil(det_x_range.end)),
int(np.floor(det_y_range.start)),
int(np.ceil(det_y_range.end)),
int(np.floor(frame_range.start)),
int(np.ceil(frame_range.end)),
]
filename_id = filelist.value[-8:-4]
if filename_id in roi_selection:
roi_selection[f"{filename_id}"].append(selection)
else:
roi_selection[f"{filename_id}"] = [selection]
selection_list.value = str(roi_selection)
selection_button = Button(label="Add selection")
selection_button.on_click(selection_button_callback)
mf_spinner = Spinner(title="Magnetic field:", format="0.00", width=145, disabled=True)
temp_spinner = Spinner(title="Temperature:", format="0.00", width=145, disabled=True)
geometry_textinput = TextInput(title="Geometry:", disabled=True)
# Final layout
layout_image = column(gridplot([[proj_v, None], [plot, proj_h]], merge_tools=False))
colormap_layout = column(
row(colormap),
row(column(Spacer(height=19), auto_toggle), display_max_spinner, display_min_spinner),
row(
column(Spacer(height=19), proj_auto_toggle),
proj_display_max_spinner,
proj_display_min_spinner,
),
)
hkl_layout = column(geometry_textinput, hkl_button)
params_layout = row(mf_spinner, temp_spinner)
layout_controls = row(
column(selection_button, selection_list),
Spacer(width=20),
column(colormap_layout),
Spacer(width=20),
column(index_spinner, params_layout, hkl_layout),
)
layout_overview = column(
gridplot(
[[overview_plot_x, overview_plot_y]],
toolbar_options=dict(logo=None),
merge_tools=True,
toolbar_location="left",
),
)
tab_layout = row(
column(
row(
proposal_textinput, filelist, Spacer(width=100), column(upload_div, upload_button),
),
layout_overview,
layout_controls,
),
column(roi_avg_plot, layout_image),
)
return Panel(child=tab_layout, title="hdf viewer")
def calculate_hkl(det_data, index):
h = np.empty(shape=(IMAGE_H, IMAGE_W))
k = np.empty(shape=(IMAGE_H, IMAGE_W))
l = np.empty(shape=(IMAGE_H, IMAGE_W))
wave = det_data["wave"]
ddist = det_data["ddist"]
gammad = det_data["gamma"][index]
om = det_data["omega"][index]
nud = det_data["nu"]
ub = det_data["ub"]
geometry = det_data["zebra_mode"]
if geometry == "bi":
chi = det_data["chi"][index]
phi = det_data["phi"][index]
elif geometry == "nb":
chi = 0
phi = 0
else:
raise ValueError(f"Unknown geometry type '{geometry}'")
for xi in np.arange(IMAGE_W):
for yi in np.arange(IMAGE_H):
h[yi, xi], k[yi, xi], l[yi, xi] = pyzebra.ang2hkl(
wave, ddist, gammad, om, chi, phi, nud, ub, xi, yi
)
return h, k, l
def calculate_pol(det_data, index):
gamma = np.empty(shape=(IMAGE_H, IMAGE_W))
nu = np.empty(shape=(IMAGE_H, IMAGE_W))
ddist = det_data["ddist"]
gammad = det_data["gamma"][index]
nud = det_data["nu"]
for xi in np.arange(IMAGE_W):
for yi in np.arange(IMAGE_H):
gamma[yi, xi], nu[yi, xi] = pyzebra.det2pol(ddist, gammad, nud, xi, yi)
return gamma, nu