915 lines
30 KiB
Python
915 lines
30 KiB
Python
import base64
|
|
import io
|
|
import os
|
|
|
|
import numpy as np
|
|
from bokeh.events import MouseEnter
|
|
from bokeh.io import curdoc
|
|
from bokeh.layouts import column, gridplot, row
|
|
from bokeh.models import (
|
|
BasicTicker,
|
|
BoxEditTool,
|
|
BoxZoomTool,
|
|
Button,
|
|
CheckboxGroup,
|
|
ColumnDataSource,
|
|
DataRange1d,
|
|
DataTable,
|
|
Div,
|
|
FileInput,
|
|
Grid,
|
|
MultiSelect,
|
|
NumberFormatter,
|
|
HoverTool,
|
|
Image,
|
|
Line,
|
|
LinearAxis,
|
|
LinearColorMapper,
|
|
Panel,
|
|
PanTool,
|
|
Plot,
|
|
Range1d,
|
|
Rect,
|
|
ResetTool,
|
|
Select,
|
|
Slider,
|
|
Spacer,
|
|
Spinner,
|
|
TableColumn,
|
|
Tabs,
|
|
Title,
|
|
WheelZoomTool,
|
|
)
|
|
from bokeh.palettes import Cividis256, Greys256, Plasma256 # pylint: disable=E0611
|
|
|
|
import pyzebra
|
|
|
|
IMAGE_W = 256
|
|
IMAGE_H = 128
|
|
IMAGE_PLOT_W = int(IMAGE_W * 2) + 52
|
|
IMAGE_PLOT_H = int(IMAGE_H * 2) + 27
|
|
|
|
|
|
def create():
|
|
doc = curdoc()
|
|
det_data = {}
|
|
cami_meta = {}
|
|
|
|
num_formatter = NumberFormatter(format="0.00", nan_format="")
|
|
|
|
def file_select_update():
|
|
if data_source.value == "proposal number":
|
|
proposal_path = proposal_textinput.name
|
|
if proposal_path:
|
|
file_list = []
|
|
for file in os.listdir(proposal_path):
|
|
if file.endswith(".hdf"):
|
|
file_list.append((os.path.join(proposal_path, file), file))
|
|
file_select.options = file_list
|
|
else:
|
|
file_select.options = []
|
|
|
|
else: # "cami file"
|
|
if not cami_meta:
|
|
file_select.options = []
|
|
return
|
|
|
|
file_list = cami_meta["filelist"]
|
|
file_select.options = [(entry, os.path.basename(entry)) for entry in file_list]
|
|
|
|
def data_source_callback(_attr, _old, _new):
|
|
file_select_update()
|
|
|
|
data_source = Select(
|
|
title="Data Source:",
|
|
value="proposal number",
|
|
options=["proposal number", "cami file"],
|
|
width=210,
|
|
)
|
|
data_source.on_change("value", data_source_callback)
|
|
|
|
doc.add_periodic_callback(file_select_update, 5000)
|
|
|
|
def proposal_textinput_callback(_attr, _old, _new):
|
|
file_select_update()
|
|
|
|
proposal_textinput = doc.proposal_textinput
|
|
proposal_textinput.on_change("name", proposal_textinput_callback)
|
|
|
|
def upload_cami_button_callback(_attr, _old, new):
|
|
nonlocal cami_meta
|
|
with io.StringIO(base64.b64decode(new).decode()) as file:
|
|
cami_meta = pyzebra.parse_h5meta(file)
|
|
data_source.value = "cami file"
|
|
file_select_update()
|
|
|
|
upload_cami_div = Div(text="or upload .cami file:", margin=(5, 5, 0, 5))
|
|
upload_cami_button = FileInput(accept=".cami", width=200)
|
|
upload_cami_button.on_change("value", upload_cami_button_callback)
|
|
|
|
def _open_file(file, cami_meta):
|
|
nonlocal det_data
|
|
det_data = pyzebra.read_detector_data(file, cami_meta)
|
|
|
|
index_spinner.value = 0
|
|
index_spinner.high = det_data["data"].shape[0] - 1
|
|
index_slider.end = det_data["data"].shape[0] - 1
|
|
|
|
zebra_mode = det_data["zebra_mode"]
|
|
if zebra_mode == "nb":
|
|
metadata_table_source.data.update(geom=["normal beam"])
|
|
else: # zebra_mode == "bi"
|
|
metadata_table_source.data.update(geom=["bisecting"])
|
|
|
|
update_image(0)
|
|
update_overview_plot()
|
|
|
|
def upload_hdf_button_callback(_attr, _old, new):
|
|
_open_file(io.BytesIO(base64.b64decode(new)), None)
|
|
|
|
upload_hdf_div = Div(text="or upload .hdf file:", margin=(5, 5, 0, 5))
|
|
upload_hdf_button = FileInput(accept=".hdf", width=200)
|
|
upload_hdf_button.on_change("value", upload_hdf_button_callback)
|
|
|
|
def file_open_button_callback():
|
|
if not file_select.value:
|
|
return
|
|
|
|
if data_source.value == "proposal number":
|
|
_open_file(file_select.value[0], None)
|
|
else:
|
|
_open_file(file_select.value[0], cami_meta)
|
|
|
|
file_open_button = Button(label="Open New", width=100)
|
|
file_open_button.on_click(file_open_button_callback)
|
|
|
|
def update_image(index=None):
|
|
if index is None:
|
|
index = index_spinner.value
|
|
|
|
current_image = det_data["data"][index]
|
|
proj_v_line_source.data.update(
|
|
x=np.arange(0, IMAGE_W) + 0.5, y=np.mean(current_image, axis=0)
|
|
)
|
|
proj_h_line_source.data.update(
|
|
x=np.mean(current_image, axis=1), y=np.arange(0, IMAGE_H) + 0.5
|
|
)
|
|
|
|
image_source.data.update(
|
|
h=[np.zeros((1, 1))], k=[np.zeros((1, 1))], l=[np.zeros((1, 1))],
|
|
)
|
|
image_source.data.update(image=[current_image])
|
|
|
|
if main_auto_checkbox.active:
|
|
im_min = np.min(current_image)
|
|
im_max = np.max(current_image)
|
|
|
|
display_min_spinner.value = im_min
|
|
display_max_spinner.value = im_max
|
|
|
|
image_glyph.color_mapper.low = im_min
|
|
image_glyph.color_mapper.high = im_max
|
|
|
|
if "mf" in det_data:
|
|
metadata_table_source.data.update(mf=[det_data["mf"][index]])
|
|
else:
|
|
metadata_table_source.data.update(mf=[None])
|
|
|
|
if "temp" in det_data:
|
|
metadata_table_source.data.update(temp=[det_data["temp"][index]])
|
|
else:
|
|
metadata_table_source.data.update(temp=[None])
|
|
|
|
gamma, nu = calculate_pol(det_data, index)
|
|
omega = np.ones((IMAGE_H, IMAGE_W)) * det_data["omega"][index]
|
|
image_source.data.update(gamma=[gamma], nu=[nu], omega=[omega])
|
|
|
|
# update detector center angles
|
|
det_c_x = int(IMAGE_W / 2)
|
|
det_c_y = int(IMAGE_H / 2)
|
|
if det_data["zebra_mode"] == "nb":
|
|
gamma_c = gamma[det_c_y, det_c_x]
|
|
nu_c = nu[det_c_y, det_c_x]
|
|
omega_c = omega[det_c_y, det_c_x]
|
|
chi_c = None
|
|
phi_c = None
|
|
|
|
else: # zebra_mode == "bi"
|
|
wave = det_data["wave"]
|
|
ddist = det_data["ddist"]
|
|
gammad = det_data["gamma"][index]
|
|
om = det_data["omega"][index]
|
|
ch = det_data["chi"][index]
|
|
ph = det_data["phi"][index]
|
|
nud = det_data["nu"]
|
|
|
|
nu_c = 0
|
|
chi_c, phi_c, gamma_c, omega_c = pyzebra.ang_proc(
|
|
wave, ddist, gammad, om, ch, ph, nud, det_c_x, det_c_y
|
|
)
|
|
|
|
detcenter_table_source.data.update(
|
|
gamma=[gamma_c], nu=[nu_c], omega=[omega_c], chi=[chi_c], phi=[phi_c],
|
|
)
|
|
|
|
def update_overview_plot():
|
|
h5_data = det_data["data"]
|
|
n_im, n_y, n_x = h5_data.shape
|
|
overview_x = np.mean(h5_data, axis=1)
|
|
overview_y = np.mean(h5_data, axis=2)
|
|
|
|
# normalize for simpler colormapping
|
|
overview_max_val = max(np.max(overview_x), np.max(overview_y))
|
|
overview_x = 1000 * overview_x / overview_max_val
|
|
overview_y = 1000 * overview_y / overview_max_val
|
|
|
|
overview_plot_x_image_source.data.update(image=[overview_x], dw=[n_x], dh=[n_im])
|
|
overview_plot_y_image_source.data.update(image=[overview_y], dw=[n_y], dh=[n_im])
|
|
|
|
if proj_auto_checkbox.active:
|
|
im_min = min(np.min(overview_x), np.min(overview_y))
|
|
im_max = max(np.max(overview_x), np.max(overview_y))
|
|
|
|
proj_display_min_spinner.value = im_min
|
|
proj_display_max_spinner.value = im_max
|
|
|
|
overview_plot_x_image_glyph.color_mapper.low = im_min
|
|
overview_plot_y_image_glyph.color_mapper.low = im_min
|
|
overview_plot_x_image_glyph.color_mapper.high = im_max
|
|
overview_plot_y_image_glyph.color_mapper.high = im_max
|
|
|
|
frame_range.start = 0
|
|
frame_range.end = n_im
|
|
frame_range.reset_start = 0
|
|
frame_range.reset_end = n_im
|
|
frame_range.bounds = (0, n_im)
|
|
|
|
scan_motor = det_data["scan_motor"]
|
|
overview_plot_y.axis[1].axis_label = f"Scanning motor, {scan_motor}"
|
|
|
|
var = det_data[scan_motor]
|
|
var_start = var[0]
|
|
var_end = var[-1] + (var[-1] - var[0]) / (n_im - 1)
|
|
|
|
scanning_motor_range.start = var_start
|
|
scanning_motor_range.end = var_end
|
|
scanning_motor_range.reset_start = var_start
|
|
scanning_motor_range.reset_end = var_end
|
|
# handle both, ascending and descending sequences
|
|
scanning_motor_range.bounds = (min(var_start, var_end), max(var_start, var_end))
|
|
|
|
gamma = image_source.data["gamma"][0]
|
|
gamma_start = gamma[0, 0]
|
|
gamma_end = gamma[0, -1]
|
|
|
|
gamma_range.start = gamma_start
|
|
gamma_range.end = gamma_end
|
|
gamma_range.reset_start = gamma_start
|
|
gamma_range.reset_end = gamma_end
|
|
gamma_range.bounds = (min(gamma_start, gamma_end), max(gamma_start, gamma_end))
|
|
|
|
nu = image_source.data["nu"][0]
|
|
nu_start = nu[0, 0]
|
|
nu_end = nu[-1, 0]
|
|
|
|
nu_range.start = nu_start
|
|
nu_range.end = nu_end
|
|
nu_range.reset_start = nu_start
|
|
nu_range.reset_end = nu_end
|
|
nu_range.bounds = (min(nu_start, nu_end), max(nu_start, nu_end))
|
|
|
|
def file_select_callback(_attr, old, new):
|
|
if not new:
|
|
# skip empty selections
|
|
return
|
|
|
|
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
|
|
if len(new) > 1:
|
|
# drop selection to the previous one
|
|
file_select.value = old
|
|
return
|
|
|
|
if len(old) > 1:
|
|
# skip unnecessary update caused by selection drop
|
|
return
|
|
|
|
file_open_button_callback()
|
|
|
|
file_select = MultiSelect(title="Available .hdf files:", width=210, height=250)
|
|
file_select.on_change("value", file_select_callback)
|
|
|
|
def index_callback(_attr, _old, new):
|
|
update_image(new)
|
|
|
|
index_slider = Slider(value=0, start=0, end=1, show_value=False, width=400)
|
|
|
|
index_spinner = Spinner(title="Image index:", value=0, low=0, width=100)
|
|
index_spinner.on_change("value", index_callback)
|
|
|
|
index_slider.js_link("value_throttled", index_spinner, "value")
|
|
index_spinner.js_link("value", index_slider, "value")
|
|
|
|
plot = Plot(
|
|
x_range=Range1d(0, IMAGE_W, bounds=(0, IMAGE_W)),
|
|
y_range=Range1d(0, IMAGE_H, bounds=(0, IMAGE_H)),
|
|
plot_height=IMAGE_PLOT_H,
|
|
plot_width=IMAGE_PLOT_W,
|
|
toolbar_location="left",
|
|
)
|
|
|
|
# ---- tools
|
|
plot.toolbar.logo = None
|
|
|
|
# ---- axes
|
|
plot.add_layout(LinearAxis(), place="above")
|
|
plot.add_layout(LinearAxis(major_label_orientation="vertical"), place="right")
|
|
|
|
# ---- grid lines
|
|
plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
|
plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
|
|
|
# ---- rgba image glyph
|
|
image_source = ColumnDataSource(
|
|
dict(
|
|
image=[np.zeros((IMAGE_H, IMAGE_W), dtype="float32")],
|
|
h=[np.zeros((1, 1))],
|
|
k=[np.zeros((1, 1))],
|
|
l=[np.zeros((1, 1))],
|
|
gamma=[np.zeros((1, 1))],
|
|
nu=[np.zeros((1, 1))],
|
|
omega=[np.zeros((1, 1))],
|
|
x=[0],
|
|
y=[0],
|
|
dw=[IMAGE_W],
|
|
dh=[IMAGE_H],
|
|
)
|
|
)
|
|
|
|
h_glyph = Image(image="h", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
|
|
k_glyph = Image(image="k", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
|
|
l_glyph = Image(image="l", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
|
|
gamma_glyph = Image(image="gamma", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
|
|
nu_glyph = Image(image="nu", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
|
|
omega_glyph = Image(image="omega", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
|
|
|
|
plot.add_glyph(image_source, h_glyph)
|
|
plot.add_glyph(image_source, k_glyph)
|
|
plot.add_glyph(image_source, l_glyph)
|
|
plot.add_glyph(image_source, gamma_glyph)
|
|
plot.add_glyph(image_source, nu_glyph)
|
|
plot.add_glyph(image_source, omega_glyph)
|
|
|
|
image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
|
|
plot.add_glyph(image_source, image_glyph, name="image_glyph")
|
|
|
|
# calculate hkl-indices of first mouse entry
|
|
def mouse_enter_callback(_event):
|
|
if det_data and np.array_equal(image_source.data["h"][0], np.zeros((1, 1))):
|
|
index = index_spinner.value
|
|
h, k, l = calculate_hkl(det_data, index)
|
|
image_source.data.update(h=[h], k=[k], l=[l])
|
|
|
|
plot.on_event(MouseEnter, mouse_enter_callback)
|
|
|
|
# ---- projections
|
|
proj_v = Plot(
|
|
x_range=plot.x_range,
|
|
y_range=DataRange1d(),
|
|
plot_height=150,
|
|
plot_width=IMAGE_PLOT_W,
|
|
toolbar_location=None,
|
|
)
|
|
|
|
proj_v.add_layout(LinearAxis(major_label_orientation="vertical"), place="right")
|
|
proj_v.add_layout(LinearAxis(major_label_text_font_size="0pt"), place="below")
|
|
|
|
proj_v.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
|
proj_v.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
|
|
|
proj_v_line_source = ColumnDataSource(dict(x=[], y=[]))
|
|
proj_v.add_glyph(proj_v_line_source, Line(x="x", y="y", line_color="steelblue"))
|
|
|
|
proj_h = Plot(
|
|
x_range=DataRange1d(),
|
|
y_range=plot.y_range,
|
|
plot_height=IMAGE_PLOT_H,
|
|
plot_width=150,
|
|
toolbar_location=None,
|
|
)
|
|
|
|
proj_h.add_layout(LinearAxis(), place="above")
|
|
proj_h.add_layout(LinearAxis(major_label_text_font_size="0pt"), place="left")
|
|
|
|
proj_h.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
|
proj_h.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
|
|
|
proj_h_line_source = ColumnDataSource(dict(x=[], y=[]))
|
|
proj_h.add_glyph(proj_h_line_source, Line(x="x", y="y", line_color="steelblue"))
|
|
|
|
# add tools
|
|
hovertool = HoverTool(
|
|
tooltips=[
|
|
("intensity", "@image"),
|
|
("gamma", "@gamma"),
|
|
("nu", "@nu"),
|
|
("omega", "@omega"),
|
|
("h", "@h"),
|
|
("k", "@k"),
|
|
("l", "@l"),
|
|
]
|
|
)
|
|
|
|
box_edit_source = ColumnDataSource(dict(x=[], y=[], width=[], height=[]))
|
|
box_edit_glyph = Rect(
|
|
x="x", y="y", width="width", height="height", fill_alpha=0, line_color="red"
|
|
)
|
|
box_edit_renderer = plot.add_glyph(box_edit_source, box_edit_glyph)
|
|
boxedittool = BoxEditTool(renderers=[box_edit_renderer], num_objects=1)
|
|
|
|
def box_edit_callback(_attr, _old, new):
|
|
if new["x"]:
|
|
h5_data = det_data["data"]
|
|
x_val = np.arange(h5_data.shape[0])
|
|
left = int(np.floor(new["x"][0]))
|
|
right = int(np.ceil(new["x"][0] + new["width"][0]))
|
|
bottom = int(np.floor(new["y"][0]))
|
|
top = int(np.ceil(new["y"][0] + new["height"][0]))
|
|
y_val = np.sum(h5_data[:, bottom:top, left:right], axis=(1, 2))
|
|
else:
|
|
x_val = []
|
|
y_val = []
|
|
|
|
roi_avg_plot_line_source.data.update(x=x_val, y=y_val)
|
|
|
|
box_edit_source.on_change("data", box_edit_callback)
|
|
|
|
wheelzoomtool = WheelZoomTool(maintain_focus=False)
|
|
plot.add_tools(
|
|
PanTool(), BoxZoomTool(), wheelzoomtool, ResetTool(), hovertool, boxedittool,
|
|
)
|
|
plot.toolbar.active_scroll = wheelzoomtool
|
|
|
|
# shared frame ranges
|
|
frame_range = Range1d(0, 1, bounds=(0, 1))
|
|
scanning_motor_range = Range1d(0, 1, bounds=(0, 1))
|
|
|
|
det_x_range = Range1d(0, IMAGE_W, bounds=(0, IMAGE_W))
|
|
gamma_range = Range1d(0, 1, bounds=(0, 1))
|
|
overview_plot_x = Plot(
|
|
title=Title(text="Projections on X-axis"),
|
|
x_range=det_x_range,
|
|
y_range=frame_range,
|
|
extra_x_ranges={"gamma": gamma_range},
|
|
extra_y_ranges={"scanning_motor": scanning_motor_range},
|
|
plot_height=450,
|
|
plot_width=IMAGE_PLOT_W - 3,
|
|
)
|
|
|
|
# ---- tools
|
|
wheelzoomtool = WheelZoomTool(maintain_focus=False)
|
|
overview_plot_x.toolbar.logo = None
|
|
overview_plot_x.add_tools(
|
|
PanTool(), BoxZoomTool(), wheelzoomtool, ResetTool(),
|
|
)
|
|
overview_plot_x.toolbar.active_scroll = wheelzoomtool
|
|
|
|
# ---- axes
|
|
overview_plot_x.add_layout(LinearAxis(axis_label="Coordinate X, pix"), place="below")
|
|
overview_plot_x.add_layout(
|
|
LinearAxis(x_range_name="gamma", axis_label="Gamma, deg"), place="above"
|
|
)
|
|
overview_plot_x.add_layout(
|
|
LinearAxis(axis_label="Frame", major_label_orientation="vertical"), place="left"
|
|
)
|
|
|
|
# ---- grid lines
|
|
overview_plot_x.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
|
overview_plot_x.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
|
|
|
# ---- rgba image glyph
|
|
overview_plot_x_image_source = ColumnDataSource(
|
|
dict(image=[np.zeros((1, 1), dtype="float32")], x=[0], y=[0], dw=[IMAGE_W], dh=[1])
|
|
)
|
|
|
|
overview_plot_x_image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
|
|
overview_plot_x.add_glyph(
|
|
overview_plot_x_image_source, overview_plot_x_image_glyph, name="image_glyph"
|
|
)
|
|
|
|
det_y_range = Range1d(0, IMAGE_H, bounds=(0, IMAGE_H))
|
|
nu_range = Range1d(0, 1, bounds=(0, 1))
|
|
overview_plot_y = Plot(
|
|
title=Title(text="Projections on Y-axis"),
|
|
x_range=det_y_range,
|
|
y_range=frame_range,
|
|
extra_x_ranges={"nu": nu_range},
|
|
extra_y_ranges={"scanning_motor": scanning_motor_range},
|
|
plot_height=450,
|
|
plot_width=IMAGE_PLOT_H + 22,
|
|
)
|
|
|
|
# ---- tools
|
|
wheelzoomtool = WheelZoomTool(maintain_focus=False)
|
|
overview_plot_y.toolbar.logo = None
|
|
overview_plot_y.add_tools(
|
|
PanTool(), BoxZoomTool(), wheelzoomtool, ResetTool(),
|
|
)
|
|
overview_plot_y.toolbar.active_scroll = wheelzoomtool
|
|
|
|
# ---- axes
|
|
overview_plot_y.add_layout(LinearAxis(axis_label="Coordinate Y, pix"), place="below")
|
|
overview_plot_y.add_layout(LinearAxis(x_range_name="nu", axis_label="Nu, deg"), place="above")
|
|
overview_plot_y.add_layout(
|
|
LinearAxis(
|
|
y_range_name="scanning_motor",
|
|
axis_label="Scanning motor",
|
|
major_label_orientation="vertical",
|
|
),
|
|
place="right",
|
|
)
|
|
|
|
# ---- grid lines
|
|
overview_plot_y.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
|
overview_plot_y.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
|
|
|
# ---- rgba image glyph
|
|
overview_plot_y_image_source = ColumnDataSource(
|
|
dict(image=[np.zeros((1, 1), dtype="float32")], x=[0], y=[0], dw=[IMAGE_H], dh=[1])
|
|
)
|
|
|
|
overview_plot_y_image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
|
|
overview_plot_y.add_glyph(
|
|
overview_plot_y_image_source, overview_plot_y_image_glyph, name="image_glyph"
|
|
)
|
|
|
|
roi_avg_plot = Plot(
|
|
x_range=DataRange1d(),
|
|
y_range=DataRange1d(),
|
|
plot_height=150,
|
|
plot_width=IMAGE_PLOT_W,
|
|
toolbar_location="left",
|
|
)
|
|
|
|
# ---- tools
|
|
roi_avg_plot.toolbar.logo = None
|
|
|
|
# ---- axes
|
|
roi_avg_plot.add_layout(LinearAxis(), place="below")
|
|
roi_avg_plot.add_layout(LinearAxis(major_label_orientation="vertical"), place="left")
|
|
|
|
# ---- grid lines
|
|
roi_avg_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
|
roi_avg_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
|
|
|
roi_avg_plot_line_source = ColumnDataSource(dict(x=[], y=[]))
|
|
roi_avg_plot.add_glyph(roi_avg_plot_line_source, Line(x="x", y="y", line_color="steelblue"))
|
|
|
|
cmap_dict = {
|
|
"gray": Greys256,
|
|
"gray_reversed": Greys256[::-1],
|
|
"plasma": Plasma256,
|
|
"cividis": Cividis256,
|
|
}
|
|
|
|
def colormap_callback(_attr, _old, new):
|
|
image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
|
|
overview_plot_x_image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
|
|
overview_plot_y_image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
|
|
|
|
colormap = Select(title="Colormap:", options=list(cmap_dict.keys()), width=210)
|
|
colormap.on_change("value", colormap_callback)
|
|
colormap.value = "plasma"
|
|
|
|
STEP = 1
|
|
|
|
def main_auto_checkbox_callback(state):
|
|
if state:
|
|
display_min_spinner.disabled = True
|
|
display_max_spinner.disabled = True
|
|
else:
|
|
display_min_spinner.disabled = False
|
|
display_max_spinner.disabled = False
|
|
|
|
update_image()
|
|
|
|
main_auto_checkbox = CheckboxGroup(
|
|
labels=["Frame Intensity Range"], active=[0], width=145, margin=[10, 5, 0, 5]
|
|
)
|
|
main_auto_checkbox.on_click(main_auto_checkbox_callback)
|
|
|
|
def display_max_spinner_callback(_attr, _old_value, new_value):
|
|
display_min_spinner.high = new_value - STEP
|
|
image_glyph.color_mapper.high = new_value
|
|
|
|
display_max_spinner = Spinner(
|
|
low=0 + STEP,
|
|
value=1,
|
|
step=STEP,
|
|
disabled=bool(main_auto_checkbox.active),
|
|
width=100,
|
|
height=31,
|
|
)
|
|
display_max_spinner.on_change("value", display_max_spinner_callback)
|
|
|
|
def display_min_spinner_callback(_attr, _old_value, new_value):
|
|
display_max_spinner.low = new_value + STEP
|
|
image_glyph.color_mapper.low = new_value
|
|
|
|
display_min_spinner = Spinner(
|
|
low=0,
|
|
high=1 - STEP,
|
|
value=0,
|
|
step=STEP,
|
|
disabled=bool(main_auto_checkbox.active),
|
|
width=100,
|
|
height=31,
|
|
)
|
|
display_min_spinner.on_change("value", display_min_spinner_callback)
|
|
|
|
PROJ_STEP = 1
|
|
|
|
def proj_auto_checkbox_callback(state):
|
|
if state:
|
|
proj_display_min_spinner.disabled = True
|
|
proj_display_max_spinner.disabled = True
|
|
else:
|
|
proj_display_min_spinner.disabled = False
|
|
proj_display_max_spinner.disabled = False
|
|
|
|
update_overview_plot()
|
|
|
|
proj_auto_checkbox = CheckboxGroup(
|
|
labels=["Projections Intensity Range"], active=[0], width=145, margin=[10, 5, 0, 5]
|
|
)
|
|
proj_auto_checkbox.on_click(proj_auto_checkbox_callback)
|
|
|
|
def proj_display_max_spinner_callback(_attr, _old_value, new_value):
|
|
proj_display_min_spinner.high = new_value - PROJ_STEP
|
|
overview_plot_x_image_glyph.color_mapper.high = new_value
|
|
overview_plot_y_image_glyph.color_mapper.high = new_value
|
|
|
|
proj_display_max_spinner = Spinner(
|
|
low=0 + PROJ_STEP,
|
|
value=1,
|
|
step=PROJ_STEP,
|
|
disabled=bool(proj_auto_checkbox.active),
|
|
width=100,
|
|
height=31,
|
|
)
|
|
proj_display_max_spinner.on_change("value", proj_display_max_spinner_callback)
|
|
|
|
def proj_display_min_spinner_callback(_attr, _old_value, new_value):
|
|
proj_display_max_spinner.low = new_value + PROJ_STEP
|
|
overview_plot_x_image_glyph.color_mapper.low = new_value
|
|
overview_plot_y_image_glyph.color_mapper.low = new_value
|
|
|
|
proj_display_min_spinner = Spinner(
|
|
low=0,
|
|
high=1 - PROJ_STEP,
|
|
value=0,
|
|
step=PROJ_STEP,
|
|
disabled=bool(proj_auto_checkbox.active),
|
|
width=100,
|
|
height=31,
|
|
)
|
|
proj_display_min_spinner.on_change("value", proj_display_min_spinner_callback)
|
|
|
|
events_data = dict(
|
|
wave=[],
|
|
ddist=[],
|
|
cell=[],
|
|
frame=[],
|
|
x_pos=[],
|
|
y_pos=[],
|
|
intensity=[],
|
|
snr_cnts=[],
|
|
gamma=[],
|
|
omega=[],
|
|
chi=[],
|
|
phi=[],
|
|
nu=[],
|
|
)
|
|
doc.events_data = events_data
|
|
|
|
events_table_source = ColumnDataSource(events_data)
|
|
events_table = DataTable(
|
|
source=events_table_source,
|
|
columns=[
|
|
TableColumn(field="frame", title="Frame", formatter=num_formatter, width=70),
|
|
TableColumn(field="x_pos", title="X", formatter=num_formatter, width=70),
|
|
TableColumn(field="y_pos", title="Y", formatter=num_formatter, width=70),
|
|
TableColumn(field="intensity", title="Intensity", formatter=num_formatter, width=70),
|
|
TableColumn(field="gamma", title="Gamma", formatter=num_formatter, width=70),
|
|
TableColumn(field="omega", title="Omega", formatter=num_formatter, width=70),
|
|
TableColumn(field="chi", title="Chi", formatter=num_formatter, width=70),
|
|
TableColumn(field="phi", title="Phi", formatter=num_formatter, width=70),
|
|
TableColumn(field="nu", title="Nu", formatter=num_formatter, width=70),
|
|
],
|
|
height=150,
|
|
width=630,
|
|
autosize_mode="none",
|
|
index_position=None,
|
|
)
|
|
|
|
detcenter_table_source = ColumnDataSource(dict(gamma=[], omega=[], chi=[], phi=[], nu=[]))
|
|
detcenter_table = DataTable(
|
|
source=detcenter_table_source,
|
|
columns=[
|
|
TableColumn(field="gamma", title="Gamma", formatter=num_formatter, width=70),
|
|
TableColumn(field="omega", title="Omega", formatter=num_formatter, width=70),
|
|
TableColumn(field="chi", title="Chi", formatter=num_formatter, width=70),
|
|
TableColumn(field="phi", title="Phi", formatter=num_formatter, width=70),
|
|
TableColumn(field="nu", title="Nu", formatter=num_formatter, width=70),
|
|
],
|
|
height=150,
|
|
width=350,
|
|
autosize_mode="none",
|
|
index_position=None,
|
|
)
|
|
|
|
def add_event_button_callback():
|
|
pyzebra.fit_event(
|
|
det_data,
|
|
int(np.floor(frame_range.start)),
|
|
int(np.ceil(frame_range.end)),
|
|
int(np.floor(det_y_range.start)),
|
|
int(np.ceil(det_y_range.end)),
|
|
int(np.floor(det_x_range.start)),
|
|
int(np.ceil(det_x_range.end)),
|
|
)
|
|
|
|
wave = det_data["wave"]
|
|
ddist = det_data["ddist"]
|
|
cell = det_data["cell"]
|
|
|
|
gamma = det_data["gamma"][0]
|
|
omega = det_data["omega"][0]
|
|
nu = det_data["nu"][0]
|
|
chi = det_data["chi"][0]
|
|
phi = det_data["phi"][0]
|
|
|
|
scan_motor = det_data["scan_motor"]
|
|
var_angle = det_data[scan_motor]
|
|
|
|
snr_cnts = det_data["fit"]["snr"]
|
|
frC = det_data["fit"]["frame"]
|
|
|
|
var_F = var_angle[int(np.floor(frC))]
|
|
var_C = var_angle[int(np.ceil(frC))]
|
|
frStep = frC - np.floor(frC)
|
|
var_step = var_C - var_F
|
|
var_p = var_F + var_step * frStep
|
|
|
|
if scan_motor == "gamma":
|
|
gamma = var_p
|
|
elif scan_motor == "omega":
|
|
omega = var_p
|
|
elif scan_motor == "nu":
|
|
nu = var_p
|
|
elif scan_motor == "chi":
|
|
chi = var_p
|
|
elif scan_motor == "phi":
|
|
phi = var_p
|
|
|
|
intensity = det_data["fit"]["intensity"]
|
|
x_pos = det_data["fit"]["x_pos"]
|
|
y_pos = det_data["fit"]["y_pos"]
|
|
|
|
if det_data["zebra_mode"] == "nb":
|
|
chi = None
|
|
phi = None
|
|
|
|
events_data["wave"].append(wave)
|
|
events_data["ddist"].append(ddist)
|
|
events_data["cell"].append(cell)
|
|
events_data["frame"].append(frC)
|
|
events_data["x_pos"].append(x_pos)
|
|
events_data["y_pos"].append(y_pos)
|
|
events_data["intensity"].append(intensity)
|
|
events_data["snr_cnts"].append(snr_cnts)
|
|
events_data["gamma"].append(gamma)
|
|
events_data["omega"].append(omega)
|
|
events_data["chi"].append(chi)
|
|
events_data["phi"].append(phi)
|
|
events_data["nu"].append(nu)
|
|
|
|
events_table_source.data = events_data
|
|
|
|
add_event_button = Button(label="Add peak center", width=145)
|
|
add_event_button.on_click(add_event_button_callback)
|
|
|
|
def remove_event_button_callback():
|
|
ind2remove = events_table_source.selected.indices
|
|
for value in events_data.values():
|
|
for ind in reversed(ind2remove):
|
|
del value[ind]
|
|
|
|
events_table_source.data = events_data
|
|
|
|
remove_event_button = Button(label="Remove peak center", width=145)
|
|
remove_event_button.on_click(remove_event_button_callback)
|
|
|
|
metadata_table_source = ColumnDataSource(dict(geom=[""], temp=[None], mf=[None]))
|
|
metadata_table = DataTable(
|
|
source=metadata_table_source,
|
|
columns=[
|
|
TableColumn(field="geom", title="Geometry", width=100),
|
|
TableColumn(field="temp", title="Temperature", formatter=num_formatter, width=100),
|
|
TableColumn(field="mf", title="Magnetic Field", formatter=num_formatter, width=100),
|
|
],
|
|
width=300,
|
|
height=50,
|
|
autosize_mode="none",
|
|
index_position=None,
|
|
)
|
|
|
|
# Final layout
|
|
peak_tables = Tabs(
|
|
tabs=[
|
|
Panel(child=events_table, title="Actual peak center"),
|
|
Panel(child=detcenter_table, title="Peak in the detector center"),
|
|
]
|
|
)
|
|
|
|
import_layout = column(
|
|
data_source,
|
|
upload_cami_div,
|
|
upload_cami_button,
|
|
upload_hdf_div,
|
|
upload_hdf_button,
|
|
file_select,
|
|
file_open_button,
|
|
)
|
|
|
|
layout_image = column(gridplot([[proj_v, None], [plot, proj_h]], merge_tools=False))
|
|
colormap_layout = column(
|
|
colormap,
|
|
main_auto_checkbox,
|
|
row(display_min_spinner, display_max_spinner),
|
|
proj_auto_checkbox,
|
|
row(proj_display_min_spinner, proj_display_max_spinner),
|
|
)
|
|
|
|
layout_controls = column(
|
|
row(metadata_table, index_spinner, column(Spacer(height=25), index_slider)),
|
|
row(column(add_event_button, remove_event_button), peak_tables),
|
|
)
|
|
|
|
layout_overview = column(
|
|
gridplot(
|
|
[[overview_plot_x, overview_plot_y]],
|
|
toolbar_options=dict(logo=None),
|
|
merge_tools=True,
|
|
toolbar_location="left",
|
|
),
|
|
)
|
|
|
|
tab_layout = row(
|
|
column(import_layout, colormap_layout),
|
|
column(layout_overview, layout_controls),
|
|
column(roi_avg_plot, layout_image),
|
|
)
|
|
|
|
return Panel(child=tab_layout, title="hdf viewer")
|
|
|
|
|
|
def calculate_hkl(det_data, index):
|
|
h = np.empty(shape=(IMAGE_H, IMAGE_W))
|
|
k = np.empty(shape=(IMAGE_H, IMAGE_W))
|
|
l = np.empty(shape=(IMAGE_H, IMAGE_W))
|
|
|
|
wave = det_data["wave"]
|
|
ddist = det_data["ddist"]
|
|
gammad = det_data["gamma"][index]
|
|
om = det_data["omega"][index]
|
|
nud = det_data["nu"]
|
|
ub = det_data["ub"]
|
|
geometry = det_data["zebra_mode"]
|
|
|
|
if geometry == "bi":
|
|
chi = det_data["chi"][index]
|
|
phi = det_data["phi"][index]
|
|
elif geometry == "nb":
|
|
chi = 0
|
|
phi = 0
|
|
else:
|
|
raise ValueError(f"Unknown geometry type '{geometry}'")
|
|
|
|
for xi in np.arange(IMAGE_W):
|
|
for yi in np.arange(IMAGE_H):
|
|
h[yi, xi], k[yi, xi], l[yi, xi] = pyzebra.ang2hkl(
|
|
wave, ddist, gammad, om, chi, phi, nud, ub, xi, yi
|
|
)
|
|
|
|
return h, k, l
|
|
|
|
|
|
def calculate_pol(det_data, index):
|
|
ddist = det_data["ddist"]
|
|
gammad = det_data["gamma"][index]
|
|
nud = det_data["nu"]
|
|
yi, xi = np.ogrid[:IMAGE_H, :IMAGE_W]
|
|
gamma, nu = pyzebra.det2pol(ddist, gammad, nud, xi, yi)
|
|
|
|
return gamma, nu
|