pyzebra/pyzebra/app/panel_hdf_viewer.py

915 lines
30 KiB
Python

import base64
import io
import os
import numpy as np
from bokeh.events import MouseEnter
from bokeh.io import curdoc
from bokeh.layouts import column, gridplot, row
from bokeh.models import (
BasicTicker,
BoxEditTool,
BoxZoomTool,
Button,
CheckboxGroup,
ColumnDataSource,
DataRange1d,
DataTable,
Div,
FileInput,
Grid,
MultiSelect,
NumberFormatter,
HoverTool,
Image,
Line,
LinearAxis,
LinearColorMapper,
Panel,
PanTool,
Plot,
Range1d,
Rect,
ResetTool,
Select,
Slider,
Spacer,
Spinner,
TableColumn,
Tabs,
Title,
WheelZoomTool,
)
from bokeh.palettes import Cividis256, Greys256, Plasma256 # pylint: disable=E0611
import pyzebra
IMAGE_W = 256
IMAGE_H = 128
IMAGE_PLOT_W = int(IMAGE_W * 2) + 52
IMAGE_PLOT_H = int(IMAGE_H * 2) + 27
def create():
doc = curdoc()
det_data = {}
cami_meta = {}
num_formatter = NumberFormatter(format="0.00", nan_format="")
def file_select_update():
if data_source.value == "proposal number":
proposal_path = proposal_textinput.name
if proposal_path:
file_list = []
for file in os.listdir(proposal_path):
if file.endswith(".hdf"):
file_list.append((os.path.join(proposal_path, file), file))
file_select.options = file_list
else:
file_select.options = []
else: # "cami file"
if not cami_meta:
file_select.options = []
return
file_list = cami_meta["filelist"]
file_select.options = [(entry, os.path.basename(entry)) for entry in file_list]
def data_source_callback(_attr, _old, _new):
file_select_update()
data_source = Select(
title="Data Source:",
value="proposal number",
options=["proposal number", "cami file"],
width=210,
)
data_source.on_change("value", data_source_callback)
doc.add_periodic_callback(file_select_update, 5000)
def proposal_textinput_callback(_attr, _old, _new):
file_select_update()
proposal_textinput = doc.proposal_textinput
proposal_textinput.on_change("name", proposal_textinput_callback)
def upload_cami_button_callback(_attr, _old, new):
nonlocal cami_meta
with io.StringIO(base64.b64decode(new).decode()) as file:
cami_meta = pyzebra.parse_h5meta(file)
data_source.value = "cami file"
file_select_update()
upload_cami_div = Div(text="or upload .cami file:", margin=(5, 5, 0, 5))
upload_cami_button = FileInput(accept=".cami", width=200)
upload_cami_button.on_change("value", upload_cami_button_callback)
def _open_file(file, cami_meta):
nonlocal det_data
det_data = pyzebra.read_detector_data(file, cami_meta)
index_spinner.value = 0
index_spinner.high = det_data["data"].shape[0] - 1
index_slider.end = det_data["data"].shape[0] - 1
zebra_mode = det_data["zebra_mode"]
if zebra_mode == "nb":
metadata_table_source.data.update(geom=["normal beam"])
else: # zebra_mode == "bi"
metadata_table_source.data.update(geom=["bisecting"])
update_image(0)
update_overview_plot()
def upload_hdf_button_callback(_attr, _old, new):
_open_file(io.BytesIO(base64.b64decode(new)), None)
upload_hdf_div = Div(text="or upload .hdf file:", margin=(5, 5, 0, 5))
upload_hdf_button = FileInput(accept=".hdf", width=200)
upload_hdf_button.on_change("value", upload_hdf_button_callback)
def file_open_button_callback():
if not file_select.value:
return
if data_source.value == "proposal number":
_open_file(file_select.value[0], None)
else:
_open_file(file_select.value[0], cami_meta)
file_open_button = Button(label="Open New", width=100)
file_open_button.on_click(file_open_button_callback)
def update_image(index=None):
if index is None:
index = index_spinner.value
current_image = det_data["data"][index]
proj_v_line_source.data.update(
x=np.arange(0, IMAGE_W) + 0.5, y=np.mean(current_image, axis=0)
)
proj_h_line_source.data.update(
x=np.mean(current_image, axis=1), y=np.arange(0, IMAGE_H) + 0.5
)
image_source.data.update(
h=[np.zeros((1, 1))], k=[np.zeros((1, 1))], l=[np.zeros((1, 1))],
)
image_source.data.update(image=[current_image])
if main_auto_checkbox.active:
im_min = np.min(current_image)
im_max = np.max(current_image)
display_min_spinner.value = im_min
display_max_spinner.value = im_max
image_glyph.color_mapper.low = im_min
image_glyph.color_mapper.high = im_max
if "mf" in det_data:
metadata_table_source.data.update(mf=[det_data["mf"][index]])
else:
metadata_table_source.data.update(mf=[None])
if "temp" in det_data:
metadata_table_source.data.update(temp=[det_data["temp"][index]])
else:
metadata_table_source.data.update(temp=[None])
gamma, nu = calculate_pol(det_data, index)
omega = np.ones((IMAGE_H, IMAGE_W)) * det_data["omega"][index]
image_source.data.update(gamma=[gamma], nu=[nu], omega=[omega])
# update detector center angles
det_c_x = int(IMAGE_W / 2)
det_c_y = int(IMAGE_H / 2)
if det_data["zebra_mode"] == "nb":
gamma_c = gamma[det_c_y, det_c_x]
nu_c = nu[det_c_y, det_c_x]
omega_c = omega[det_c_y, det_c_x]
chi_c = None
phi_c = None
else: # zebra_mode == "bi"
wave = det_data["wave"]
ddist = det_data["ddist"]
gammad = det_data["gamma"][index]
om = det_data["omega"][index]
ch = det_data["chi"][index]
ph = det_data["phi"][index]
nud = det_data["nu"]
nu_c = 0
chi_c, phi_c, gamma_c, omega_c = pyzebra.ang_proc(
wave, ddist, gammad, om, ch, ph, nud, det_c_x, det_c_y
)
detcenter_table_source.data.update(
gamma=[gamma_c], nu=[nu_c], omega=[omega_c], chi=[chi_c], phi=[phi_c],
)
def update_overview_plot():
h5_data = det_data["data"]
n_im, n_y, n_x = h5_data.shape
overview_x = np.mean(h5_data, axis=1)
overview_y = np.mean(h5_data, axis=2)
# normalize for simpler colormapping
overview_max_val = max(np.max(overview_x), np.max(overview_y))
overview_x = 1000 * overview_x / overview_max_val
overview_y = 1000 * overview_y / overview_max_val
overview_plot_x_image_source.data.update(image=[overview_x], dw=[n_x], dh=[n_im])
overview_plot_y_image_source.data.update(image=[overview_y], dw=[n_y], dh=[n_im])
if proj_auto_checkbox.active:
im_min = min(np.min(overview_x), np.min(overview_y))
im_max = max(np.max(overview_x), np.max(overview_y))
proj_display_min_spinner.value = im_min
proj_display_max_spinner.value = im_max
overview_plot_x_image_glyph.color_mapper.low = im_min
overview_plot_y_image_glyph.color_mapper.low = im_min
overview_plot_x_image_glyph.color_mapper.high = im_max
overview_plot_y_image_glyph.color_mapper.high = im_max
frame_range.start = 0
frame_range.end = n_im
frame_range.reset_start = 0
frame_range.reset_end = n_im
frame_range.bounds = (0, n_im)
scan_motor = det_data["scan_motor"]
overview_plot_y.axis[1].axis_label = f"Scanning motor, {scan_motor}"
var = det_data[scan_motor]
var_start = var[0]
var_end = var[-1] + (var[-1] - var[0]) / (n_im - 1)
scanning_motor_range.start = var_start
scanning_motor_range.end = var_end
scanning_motor_range.reset_start = var_start
scanning_motor_range.reset_end = var_end
# handle both, ascending and descending sequences
scanning_motor_range.bounds = (min(var_start, var_end), max(var_start, var_end))
gamma = image_source.data["gamma"][0]
gamma_start = gamma[0, 0]
gamma_end = gamma[0, -1]
gamma_range.start = gamma_start
gamma_range.end = gamma_end
gamma_range.reset_start = gamma_start
gamma_range.reset_end = gamma_end
gamma_range.bounds = (min(gamma_start, gamma_end), max(gamma_start, gamma_end))
nu = image_source.data["nu"][0]
nu_start = nu[0, 0]
nu_end = nu[-1, 0]
nu_range.start = nu_start
nu_range.end = nu_end
nu_range.reset_start = nu_start
nu_range.reset_end = nu_end
nu_range.bounds = (min(nu_start, nu_end), max(nu_start, nu_end))
def file_select_callback(_attr, old, new):
if not new:
# skip empty selections
return
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
if len(new) > 1:
# drop selection to the previous one
file_select.value = old
return
if len(old) > 1:
# skip unnecessary update caused by selection drop
return
file_open_button_callback()
file_select = MultiSelect(title="Available .hdf files:", width=210, height=250)
file_select.on_change("value", file_select_callback)
def index_callback(_attr, _old, new):
update_image(new)
index_slider = Slider(value=0, start=0, end=1, show_value=False, width=400)
index_spinner = Spinner(title="Image index:", value=0, low=0, width=100)
index_spinner.on_change("value", index_callback)
index_slider.js_link("value_throttled", index_spinner, "value")
index_spinner.js_link("value", index_slider, "value")
plot = Plot(
x_range=Range1d(0, IMAGE_W, bounds=(0, IMAGE_W)),
y_range=Range1d(0, IMAGE_H, bounds=(0, IMAGE_H)),
plot_height=IMAGE_PLOT_H,
plot_width=IMAGE_PLOT_W,
toolbar_location="left",
)
# ---- tools
plot.toolbar.logo = None
# ---- axes
plot.add_layout(LinearAxis(), place="above")
plot.add_layout(LinearAxis(major_label_orientation="vertical"), place="right")
# ---- grid lines
plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
# ---- rgba image glyph
image_source = ColumnDataSource(
dict(
image=[np.zeros((IMAGE_H, IMAGE_W), dtype="float32")],
h=[np.zeros((1, 1))],
k=[np.zeros((1, 1))],
l=[np.zeros((1, 1))],
gamma=[np.zeros((1, 1))],
nu=[np.zeros((1, 1))],
omega=[np.zeros((1, 1))],
x=[0],
y=[0],
dw=[IMAGE_W],
dh=[IMAGE_H],
)
)
h_glyph = Image(image="h", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
k_glyph = Image(image="k", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
l_glyph = Image(image="l", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
gamma_glyph = Image(image="gamma", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
nu_glyph = Image(image="nu", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
omega_glyph = Image(image="omega", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
plot.add_glyph(image_source, h_glyph)
plot.add_glyph(image_source, k_glyph)
plot.add_glyph(image_source, l_glyph)
plot.add_glyph(image_source, gamma_glyph)
plot.add_glyph(image_source, nu_glyph)
plot.add_glyph(image_source, omega_glyph)
image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
plot.add_glyph(image_source, image_glyph, name="image_glyph")
# calculate hkl-indices of first mouse entry
def mouse_enter_callback(_event):
if det_data and np.array_equal(image_source.data["h"][0], np.zeros((1, 1))):
index = index_spinner.value
h, k, l = calculate_hkl(det_data, index)
image_source.data.update(h=[h], k=[k], l=[l])
plot.on_event(MouseEnter, mouse_enter_callback)
# ---- projections
proj_v = Plot(
x_range=plot.x_range,
y_range=DataRange1d(),
plot_height=150,
plot_width=IMAGE_PLOT_W,
toolbar_location=None,
)
proj_v.add_layout(LinearAxis(major_label_orientation="vertical"), place="right")
proj_v.add_layout(LinearAxis(major_label_text_font_size="0pt"), place="below")
proj_v.add_layout(Grid(dimension=0, ticker=BasicTicker()))
proj_v.add_layout(Grid(dimension=1, ticker=BasicTicker()))
proj_v_line_source = ColumnDataSource(dict(x=[], y=[]))
proj_v.add_glyph(proj_v_line_source, Line(x="x", y="y", line_color="steelblue"))
proj_h = Plot(
x_range=DataRange1d(),
y_range=plot.y_range,
plot_height=IMAGE_PLOT_H,
plot_width=150,
toolbar_location=None,
)
proj_h.add_layout(LinearAxis(), place="above")
proj_h.add_layout(LinearAxis(major_label_text_font_size="0pt"), place="left")
proj_h.add_layout(Grid(dimension=0, ticker=BasicTicker()))
proj_h.add_layout(Grid(dimension=1, ticker=BasicTicker()))
proj_h_line_source = ColumnDataSource(dict(x=[], y=[]))
proj_h.add_glyph(proj_h_line_source, Line(x="x", y="y", line_color="steelblue"))
# add tools
hovertool = HoverTool(
tooltips=[
("intensity", "@image"),
("gamma", "@gamma"),
("nu", "@nu"),
("omega", "@omega"),
("h", "@h"),
("k", "@k"),
("l", "@l"),
]
)
box_edit_source = ColumnDataSource(dict(x=[], y=[], width=[], height=[]))
box_edit_glyph = Rect(
x="x", y="y", width="width", height="height", fill_alpha=0, line_color="red"
)
box_edit_renderer = plot.add_glyph(box_edit_source, box_edit_glyph)
boxedittool = BoxEditTool(renderers=[box_edit_renderer], num_objects=1)
def box_edit_callback(_attr, _old, new):
if new["x"]:
h5_data = det_data["data"]
x_val = np.arange(h5_data.shape[0])
left = int(np.floor(new["x"][0]))
right = int(np.ceil(new["x"][0] + new["width"][0]))
bottom = int(np.floor(new["y"][0]))
top = int(np.ceil(new["y"][0] + new["height"][0]))
y_val = np.sum(h5_data[:, bottom:top, left:right], axis=(1, 2))
else:
x_val = []
y_val = []
roi_avg_plot_line_source.data.update(x=x_val, y=y_val)
box_edit_source.on_change("data", box_edit_callback)
wheelzoomtool = WheelZoomTool(maintain_focus=False)
plot.add_tools(
PanTool(), BoxZoomTool(), wheelzoomtool, ResetTool(), hovertool, boxedittool,
)
plot.toolbar.active_scroll = wheelzoomtool
# shared frame ranges
frame_range = Range1d(0, 1, bounds=(0, 1))
scanning_motor_range = Range1d(0, 1, bounds=(0, 1))
det_x_range = Range1d(0, IMAGE_W, bounds=(0, IMAGE_W))
gamma_range = Range1d(0, 1, bounds=(0, 1))
overview_plot_x = Plot(
title=Title(text="Projections on X-axis"),
x_range=det_x_range,
y_range=frame_range,
extra_x_ranges={"gamma": gamma_range},
extra_y_ranges={"scanning_motor": scanning_motor_range},
plot_height=450,
plot_width=IMAGE_PLOT_W - 3,
)
# ---- tools
wheelzoomtool = WheelZoomTool(maintain_focus=False)
overview_plot_x.toolbar.logo = None
overview_plot_x.add_tools(
PanTool(), BoxZoomTool(), wheelzoomtool, ResetTool(),
)
overview_plot_x.toolbar.active_scroll = wheelzoomtool
# ---- axes
overview_plot_x.add_layout(LinearAxis(axis_label="Coordinate X, pix"), place="below")
overview_plot_x.add_layout(
LinearAxis(x_range_name="gamma", axis_label="Gamma, deg"), place="above"
)
overview_plot_x.add_layout(
LinearAxis(axis_label="Frame", major_label_orientation="vertical"), place="left"
)
# ---- grid lines
overview_plot_x.add_layout(Grid(dimension=0, ticker=BasicTicker()))
overview_plot_x.add_layout(Grid(dimension=1, ticker=BasicTicker()))
# ---- rgba image glyph
overview_plot_x_image_source = ColumnDataSource(
dict(image=[np.zeros((1, 1), dtype="float32")], x=[0], y=[0], dw=[IMAGE_W], dh=[1])
)
overview_plot_x_image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
overview_plot_x.add_glyph(
overview_plot_x_image_source, overview_plot_x_image_glyph, name="image_glyph"
)
det_y_range = Range1d(0, IMAGE_H, bounds=(0, IMAGE_H))
nu_range = Range1d(0, 1, bounds=(0, 1))
overview_plot_y = Plot(
title=Title(text="Projections on Y-axis"),
x_range=det_y_range,
y_range=frame_range,
extra_x_ranges={"nu": nu_range},
extra_y_ranges={"scanning_motor": scanning_motor_range},
plot_height=450,
plot_width=IMAGE_PLOT_H + 22,
)
# ---- tools
wheelzoomtool = WheelZoomTool(maintain_focus=False)
overview_plot_y.toolbar.logo = None
overview_plot_y.add_tools(
PanTool(), BoxZoomTool(), wheelzoomtool, ResetTool(),
)
overview_plot_y.toolbar.active_scroll = wheelzoomtool
# ---- axes
overview_plot_y.add_layout(LinearAxis(axis_label="Coordinate Y, pix"), place="below")
overview_plot_y.add_layout(LinearAxis(x_range_name="nu", axis_label="Nu, deg"), place="above")
overview_plot_y.add_layout(
LinearAxis(
y_range_name="scanning_motor",
axis_label="Scanning motor",
major_label_orientation="vertical",
),
place="right",
)
# ---- grid lines
overview_plot_y.add_layout(Grid(dimension=0, ticker=BasicTicker()))
overview_plot_y.add_layout(Grid(dimension=1, ticker=BasicTicker()))
# ---- rgba image glyph
overview_plot_y_image_source = ColumnDataSource(
dict(image=[np.zeros((1, 1), dtype="float32")], x=[0], y=[0], dw=[IMAGE_H], dh=[1])
)
overview_plot_y_image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
overview_plot_y.add_glyph(
overview_plot_y_image_source, overview_plot_y_image_glyph, name="image_glyph"
)
roi_avg_plot = Plot(
x_range=DataRange1d(),
y_range=DataRange1d(),
plot_height=150,
plot_width=IMAGE_PLOT_W,
toolbar_location="left",
)
# ---- tools
roi_avg_plot.toolbar.logo = None
# ---- axes
roi_avg_plot.add_layout(LinearAxis(), place="below")
roi_avg_plot.add_layout(LinearAxis(major_label_orientation="vertical"), place="left")
# ---- grid lines
roi_avg_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
roi_avg_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
roi_avg_plot_line_source = ColumnDataSource(dict(x=[], y=[]))
roi_avg_plot.add_glyph(roi_avg_plot_line_source, Line(x="x", y="y", line_color="steelblue"))
cmap_dict = {
"gray": Greys256,
"gray_reversed": Greys256[::-1],
"plasma": Plasma256,
"cividis": Cividis256,
}
def colormap_callback(_attr, _old, new):
image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
overview_plot_x_image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
overview_plot_y_image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
colormap = Select(title="Colormap:", options=list(cmap_dict.keys()), width=210)
colormap.on_change("value", colormap_callback)
colormap.value = "plasma"
STEP = 1
def main_auto_checkbox_callback(state):
if state:
display_min_spinner.disabled = True
display_max_spinner.disabled = True
else:
display_min_spinner.disabled = False
display_max_spinner.disabled = False
update_image()
main_auto_checkbox = CheckboxGroup(
labels=["Frame Intensity Range"], active=[0], width=145, margin=[10, 5, 0, 5]
)
main_auto_checkbox.on_click(main_auto_checkbox_callback)
def display_max_spinner_callback(_attr, _old_value, new_value):
display_min_spinner.high = new_value - STEP
image_glyph.color_mapper.high = new_value
display_max_spinner = Spinner(
low=0 + STEP,
value=1,
step=STEP,
disabled=bool(main_auto_checkbox.active),
width=100,
height=31,
)
display_max_spinner.on_change("value", display_max_spinner_callback)
def display_min_spinner_callback(_attr, _old_value, new_value):
display_max_spinner.low = new_value + STEP
image_glyph.color_mapper.low = new_value
display_min_spinner = Spinner(
low=0,
high=1 - STEP,
value=0,
step=STEP,
disabled=bool(main_auto_checkbox.active),
width=100,
height=31,
)
display_min_spinner.on_change("value", display_min_spinner_callback)
PROJ_STEP = 1
def proj_auto_checkbox_callback(state):
if state:
proj_display_min_spinner.disabled = True
proj_display_max_spinner.disabled = True
else:
proj_display_min_spinner.disabled = False
proj_display_max_spinner.disabled = False
update_overview_plot()
proj_auto_checkbox = CheckboxGroup(
labels=["Projections Intensity Range"], active=[0], width=145, margin=[10, 5, 0, 5]
)
proj_auto_checkbox.on_click(proj_auto_checkbox_callback)
def proj_display_max_spinner_callback(_attr, _old_value, new_value):
proj_display_min_spinner.high = new_value - PROJ_STEP
overview_plot_x_image_glyph.color_mapper.high = new_value
overview_plot_y_image_glyph.color_mapper.high = new_value
proj_display_max_spinner = Spinner(
low=0 + PROJ_STEP,
value=1,
step=PROJ_STEP,
disabled=bool(proj_auto_checkbox.active),
width=100,
height=31,
)
proj_display_max_spinner.on_change("value", proj_display_max_spinner_callback)
def proj_display_min_spinner_callback(_attr, _old_value, new_value):
proj_display_max_spinner.low = new_value + PROJ_STEP
overview_plot_x_image_glyph.color_mapper.low = new_value
overview_plot_y_image_glyph.color_mapper.low = new_value
proj_display_min_spinner = Spinner(
low=0,
high=1 - PROJ_STEP,
value=0,
step=PROJ_STEP,
disabled=bool(proj_auto_checkbox.active),
width=100,
height=31,
)
proj_display_min_spinner.on_change("value", proj_display_min_spinner_callback)
events_data = dict(
wave=[],
ddist=[],
cell=[],
frame=[],
x_pos=[],
y_pos=[],
intensity=[],
snr_cnts=[],
gamma=[],
omega=[],
chi=[],
phi=[],
nu=[],
)
doc.events_data = events_data
events_table_source = ColumnDataSource(events_data)
events_table = DataTable(
source=events_table_source,
columns=[
TableColumn(field="frame", title="Frame", formatter=num_formatter, width=70),
TableColumn(field="x_pos", title="X", formatter=num_formatter, width=70),
TableColumn(field="y_pos", title="Y", formatter=num_formatter, width=70),
TableColumn(field="intensity", title="Intensity", formatter=num_formatter, width=70),
TableColumn(field="gamma", title="Gamma", formatter=num_formatter, width=70),
TableColumn(field="omega", title="Omega", formatter=num_formatter, width=70),
TableColumn(field="chi", title="Chi", formatter=num_formatter, width=70),
TableColumn(field="phi", title="Phi", formatter=num_formatter, width=70),
TableColumn(field="nu", title="Nu", formatter=num_formatter, width=70),
],
height=150,
width=630,
autosize_mode="none",
index_position=None,
)
detcenter_table_source = ColumnDataSource(dict(gamma=[], omega=[], chi=[], phi=[], nu=[]))
detcenter_table = DataTable(
source=detcenter_table_source,
columns=[
TableColumn(field="gamma", title="Gamma", formatter=num_formatter, width=70),
TableColumn(field="omega", title="Omega", formatter=num_formatter, width=70),
TableColumn(field="chi", title="Chi", formatter=num_formatter, width=70),
TableColumn(field="phi", title="Phi", formatter=num_formatter, width=70),
TableColumn(field="nu", title="Nu", formatter=num_formatter, width=70),
],
height=150,
width=350,
autosize_mode="none",
index_position=None,
)
def add_event_button_callback():
pyzebra.fit_event(
det_data,
int(np.floor(frame_range.start)),
int(np.ceil(frame_range.end)),
int(np.floor(det_y_range.start)),
int(np.ceil(det_y_range.end)),
int(np.floor(det_x_range.start)),
int(np.ceil(det_x_range.end)),
)
wave = det_data["wave"]
ddist = det_data["ddist"]
cell = det_data["cell"]
gamma = det_data["gamma"][0]
omega = det_data["omega"][0]
nu = det_data["nu"][0]
chi = det_data["chi"][0]
phi = det_data["phi"][0]
scan_motor = det_data["scan_motor"]
var_angle = det_data[scan_motor]
snr_cnts = det_data["fit"]["snr"]
frC = det_data["fit"]["frame"]
var_F = var_angle[int(np.floor(frC))]
var_C = var_angle[int(np.ceil(frC))]
frStep = frC - np.floor(frC)
var_step = var_C - var_F
var_p = var_F + var_step * frStep
if scan_motor == "gamma":
gamma = var_p
elif scan_motor == "omega":
omega = var_p
elif scan_motor == "nu":
nu = var_p
elif scan_motor == "chi":
chi = var_p
elif scan_motor == "phi":
phi = var_p
intensity = det_data["fit"]["intensity"]
x_pos = det_data["fit"]["x_pos"]
y_pos = det_data["fit"]["y_pos"]
if det_data["zebra_mode"] == "nb":
chi = None
phi = None
events_data["wave"].append(wave)
events_data["ddist"].append(ddist)
events_data["cell"].append(cell)
events_data["frame"].append(frC)
events_data["x_pos"].append(x_pos)
events_data["y_pos"].append(y_pos)
events_data["intensity"].append(intensity)
events_data["snr_cnts"].append(snr_cnts)
events_data["gamma"].append(gamma)
events_data["omega"].append(omega)
events_data["chi"].append(chi)
events_data["phi"].append(phi)
events_data["nu"].append(nu)
events_table_source.data = events_data
add_event_button = Button(label="Add peak center", width=145)
add_event_button.on_click(add_event_button_callback)
def remove_event_button_callback():
ind2remove = events_table_source.selected.indices
for value in events_data.values():
for ind in reversed(ind2remove):
del value[ind]
events_table_source.data = events_data
remove_event_button = Button(label="Remove peak center", width=145)
remove_event_button.on_click(remove_event_button_callback)
metadata_table_source = ColumnDataSource(dict(geom=[""], temp=[None], mf=[None]))
metadata_table = DataTable(
source=metadata_table_source,
columns=[
TableColumn(field="geom", title="Geometry", width=100),
TableColumn(field="temp", title="Temperature", formatter=num_formatter, width=100),
TableColumn(field="mf", title="Magnetic Field", formatter=num_formatter, width=100),
],
width=300,
height=50,
autosize_mode="none",
index_position=None,
)
# Final layout
peak_tables = Tabs(
tabs=[
Panel(child=events_table, title="Actual peak center"),
Panel(child=detcenter_table, title="Peak in the detector center"),
]
)
import_layout = column(
data_source,
upload_cami_div,
upload_cami_button,
upload_hdf_div,
upload_hdf_button,
file_select,
file_open_button,
)
layout_image = column(gridplot([[proj_v, None], [plot, proj_h]], merge_tools=False))
colormap_layout = column(
colormap,
main_auto_checkbox,
row(display_min_spinner, display_max_spinner),
proj_auto_checkbox,
row(proj_display_min_spinner, proj_display_max_spinner),
)
layout_controls = column(
row(metadata_table, index_spinner, column(Spacer(height=25), index_slider)),
row(column(add_event_button, remove_event_button), peak_tables),
)
layout_overview = column(
gridplot(
[[overview_plot_x, overview_plot_y]],
toolbar_options=dict(logo=None),
merge_tools=True,
toolbar_location="left",
),
)
tab_layout = row(
column(import_layout, colormap_layout),
column(layout_overview, layout_controls),
column(roi_avg_plot, layout_image),
)
return Panel(child=tab_layout, title="hdf viewer")
def calculate_hkl(det_data, index):
h = np.empty(shape=(IMAGE_H, IMAGE_W))
k = np.empty(shape=(IMAGE_H, IMAGE_W))
l = np.empty(shape=(IMAGE_H, IMAGE_W))
wave = det_data["wave"]
ddist = det_data["ddist"]
gammad = det_data["gamma"][index]
om = det_data["omega"][index]
nud = det_data["nu"]
ub = det_data["ub"]
geometry = det_data["zebra_mode"]
if geometry == "bi":
chi = det_data["chi"][index]
phi = det_data["phi"][index]
elif geometry == "nb":
chi = 0
phi = 0
else:
raise ValueError(f"Unknown geometry type '{geometry}'")
for xi in np.arange(IMAGE_W):
for yi in np.arange(IMAGE_H):
h[yi, xi], k[yi, xi], l[yi, xi] = pyzebra.ang2hkl(
wave, ddist, gammad, om, chi, phi, nud, ub, xi, yi
)
return h, k, l
def calculate_pol(det_data, index):
ddist = det_data["ddist"]
gammad = det_data["gamma"][index]
nud = det_data["nu"]
yi, xi = np.ogrid[:IMAGE_H, :IMAGE_W]
gamma, nu = pyzebra.det2pol(ddist, gammad, nud, xi, yi)
return gamma, nu