839 lines
29 KiB
Python
839 lines
29 KiB
Python
import base64
|
|
import io
|
|
import itertools
|
|
import os
|
|
import tempfile
|
|
import types
|
|
|
|
import numpy as np
|
|
from bokeh.io import curdoc
|
|
from bokeh.layouts import column, row
|
|
from bokeh.models import (
|
|
BasicTicker,
|
|
Button,
|
|
CellEditor,
|
|
CheckboxEditor,
|
|
CheckboxGroup,
|
|
ColumnDataSource,
|
|
CustomJS,
|
|
DataRange1d,
|
|
DataTable,
|
|
Div,
|
|
Dropdown,
|
|
FileInput,
|
|
Grid,
|
|
HoverTool,
|
|
Image,
|
|
Legend,
|
|
Line,
|
|
LinearAxis,
|
|
MultiLine,
|
|
MultiSelect,
|
|
NumberEditor,
|
|
Panel,
|
|
PanTool,
|
|
Plot,
|
|
RadioGroup,
|
|
ResetTool,
|
|
Scatter,
|
|
Select,
|
|
Spacer,
|
|
Span,
|
|
Spinner,
|
|
TableColumn,
|
|
Tabs,
|
|
TextAreaInput,
|
|
WheelZoomTool,
|
|
Whisker,
|
|
)
|
|
from bokeh.palettes import Category10, Turbo256
|
|
from bokeh.transform import linear_cmap
|
|
from scipy import interpolate
|
|
|
|
import pyzebra
|
|
from pyzebra.ccl_process import AREA_METHODS
|
|
|
|
javaScript = """
|
|
let j = 0;
|
|
for (let i = 0; i < js_data.data['fname'].length; i++) {
|
|
if (js_data.data['content'][i] === "") continue;
|
|
|
|
setTimeout(function() {
|
|
const blob = new Blob([js_data.data['content'][i]], {type: 'text/plain'})
|
|
const link = document.createElement('a');
|
|
document.body.appendChild(link);
|
|
const url = window.URL.createObjectURL(blob);
|
|
link.href = url;
|
|
link.download = js_data.data['fname'][i] + js_data.data['ext'][i];
|
|
link.click();
|
|
window.URL.revokeObjectURL(url);
|
|
document.body.removeChild(link);
|
|
}, 100 * j)
|
|
|
|
j++;
|
|
}
|
|
"""
|
|
|
|
|
|
def color_palette(n_colors):
|
|
palette = itertools.cycle(Category10[10])
|
|
return list(itertools.islice(palette, n_colors))
|
|
|
|
|
|
def create():
|
|
doc = curdoc()
|
|
det_data = []
|
|
fit_params = {}
|
|
js_data = ColumnDataSource(data=dict(content=[""], fname=[""], ext=[""]))
|
|
|
|
def file_select_update_for_proposal():
|
|
proposal_path = proposal_textinput.name
|
|
if proposal_path:
|
|
file_list = []
|
|
for file in os.listdir(proposal_path):
|
|
if file.endswith((".ccl", ".dat")):
|
|
file_list.append((os.path.join(proposal_path, file), file))
|
|
file_select.options = file_list
|
|
file_open_button.disabled = False
|
|
file_append_button.disabled = False
|
|
else:
|
|
file_select.options = []
|
|
file_open_button.disabled = True
|
|
file_append_button.disabled = True
|
|
|
|
doc.add_periodic_callback(file_select_update_for_proposal, 5000)
|
|
|
|
def proposal_textinput_callback(_attr, _old, _new):
|
|
file_select_update_for_proposal()
|
|
|
|
proposal_textinput = doc.proposal_textinput
|
|
proposal_textinput.on_change("name", proposal_textinput_callback)
|
|
|
|
def _init_datatable():
|
|
scan_list = [s["idx"] for s in det_data]
|
|
export = [s["export"] for s in det_data]
|
|
if param_select.value == "user defined":
|
|
param = [None] * len(det_data)
|
|
else:
|
|
param = [scan[param_select.value] for scan in det_data]
|
|
|
|
file_list = []
|
|
for scan in det_data:
|
|
file_list.append(os.path.basename(scan["original_filename"]))
|
|
|
|
scan_table_source.data.update(
|
|
file=file_list,
|
|
scan=scan_list,
|
|
param=param,
|
|
fit=[0] * len(scan_list),
|
|
export=export,
|
|
)
|
|
scan_table_source.selected.indices = []
|
|
scan_table_source.selected.indices = [0]
|
|
|
|
scan_motor_select.options = det_data[0]["scan_motors"]
|
|
scan_motor_select.value = det_data[0]["scan_motor"]
|
|
|
|
merge_options = [(str(i), f"{i} ({idx})") for i, idx in enumerate(scan_list)]
|
|
merge_from_select.options = merge_options
|
|
merge_from_select.value = merge_options[0][0]
|
|
|
|
file_select = MultiSelect(title="Available .ccl/.dat files:", width=210, height=250)
|
|
|
|
def file_open_button_callback():
|
|
nonlocal det_data
|
|
new_data = []
|
|
for f_path in file_select.value:
|
|
with open(f_path) as file:
|
|
f_name = os.path.basename(f_path)
|
|
base, ext = os.path.splitext(f_name)
|
|
try:
|
|
file_data = pyzebra.parse_1D(file, ext)
|
|
except:
|
|
print(f"Error loading {f_name}")
|
|
continue
|
|
|
|
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
|
|
|
|
if not new_data: # first file
|
|
new_data = file_data
|
|
pyzebra.merge_duplicates(new_data)
|
|
js_data.data.update(fname=[base])
|
|
else:
|
|
pyzebra.merge_datasets(new_data, file_data)
|
|
|
|
if new_data:
|
|
det_data = new_data
|
|
_init_datatable()
|
|
append_upload_button.disabled = False
|
|
|
|
file_open_button = Button(label="Open New", width=100, disabled=True)
|
|
file_open_button.on_click(file_open_button_callback)
|
|
|
|
def file_append_button_callback():
|
|
file_data = []
|
|
for f_path in file_select.value:
|
|
with open(f_path) as file:
|
|
f_name = os.path.basename(f_path)
|
|
_, ext = os.path.splitext(f_name)
|
|
try:
|
|
file_data = pyzebra.parse_1D(file, ext)
|
|
except:
|
|
print(f"Error loading {f_name}")
|
|
continue
|
|
|
|
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
|
|
pyzebra.merge_datasets(det_data, file_data)
|
|
|
|
if file_data:
|
|
_init_datatable()
|
|
|
|
file_append_button = Button(label="Append", width=100, disabled=True)
|
|
file_append_button.on_click(file_append_button_callback)
|
|
|
|
def upload_button_callback(_attr, _old, _new):
|
|
nonlocal det_data
|
|
new_data = []
|
|
for f_str, f_name in zip(upload_button.value, upload_button.filename):
|
|
with io.StringIO(base64.b64decode(f_str).decode()) as file:
|
|
base, ext = os.path.splitext(f_name)
|
|
try:
|
|
file_data = pyzebra.parse_1D(file, ext)
|
|
except:
|
|
print(f"Error loading {f_name}")
|
|
continue
|
|
|
|
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
|
|
|
|
if not new_data: # first file
|
|
new_data = file_data
|
|
pyzebra.merge_duplicates(new_data)
|
|
js_data.data.update(fname=[base])
|
|
else:
|
|
pyzebra.merge_datasets(new_data, file_data)
|
|
|
|
if new_data:
|
|
det_data = new_data
|
|
_init_datatable()
|
|
append_upload_button.disabled = False
|
|
|
|
upload_div = Div(text="or upload new .ccl/.dat files:", margin=(5, 5, 0, 5))
|
|
upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200)
|
|
# for on_change("value", ...) or on_change("filename", ...),
|
|
# see https://github.com/bokeh/bokeh/issues/11461
|
|
upload_button.on_change("filename", upload_button_callback)
|
|
|
|
def append_upload_button_callback(_attr, _old, _new):
|
|
file_data = []
|
|
for f_str, f_name in zip(append_upload_button.value, append_upload_button.filename):
|
|
with io.StringIO(base64.b64decode(f_str).decode()) as file:
|
|
_, ext = os.path.splitext(f_name)
|
|
try:
|
|
file_data = pyzebra.parse_1D(file, ext)
|
|
except:
|
|
print(f"Error loading {f_name}")
|
|
continue
|
|
|
|
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
|
|
pyzebra.merge_datasets(det_data, file_data)
|
|
|
|
if file_data:
|
|
_init_datatable()
|
|
|
|
append_upload_div = Div(text="append extra files:", margin=(5, 5, 0, 5))
|
|
append_upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200, disabled=True)
|
|
# for on_change("value", ...) or on_change("filename", ...),
|
|
# see https://github.com/bokeh/bokeh/issues/11461
|
|
append_upload_button.on_change("filename", append_upload_button_callback)
|
|
|
|
def monitor_spinner_callback(_attr, _old, new):
|
|
if det_data:
|
|
pyzebra.normalize_dataset(det_data, new)
|
|
_update_single_scan_plot()
|
|
_update_overview()
|
|
|
|
monitor_spinner = Spinner(title="Monitor:", mode="int", value=100_000, low=1, width=145)
|
|
monitor_spinner.on_change("value", monitor_spinner_callback)
|
|
|
|
def scan_motor_select_callback(_attr, _old, new):
|
|
if det_data:
|
|
for scan in det_data:
|
|
scan["scan_motor"] = new
|
|
_update_single_scan_plot()
|
|
_update_overview()
|
|
|
|
scan_motor_select = Select(title="Scan motor:", options=[], width=145)
|
|
scan_motor_select.on_change("value", scan_motor_select_callback)
|
|
|
|
def _update_table():
|
|
fit_ok = [(1 if "fit" in scan else 0) for scan in det_data]
|
|
export = [scan["export"] for scan in det_data]
|
|
if param_select.value == "user defined":
|
|
param = [None] * len(det_data)
|
|
else:
|
|
param = [scan[param_select.value] for scan in det_data]
|
|
|
|
scan_table_source.data.update(fit=fit_ok, export=export, param=param)
|
|
|
|
def _update_single_scan_plot():
|
|
scan = _get_selected_scan()
|
|
scan_motor = scan["scan_motor"]
|
|
|
|
y = scan["counts"]
|
|
y_err = scan["counts_err"]
|
|
x = scan[scan_motor]
|
|
|
|
plot.axis[0].axis_label = scan_motor
|
|
plot_scatter_source.data.update(x=x, y=y, y_upper=y + y_err, y_lower=y - y_err)
|
|
|
|
fit = scan.get("fit")
|
|
if fit is not None:
|
|
x_fit = np.linspace(x[0], x[-1], 100)
|
|
plot_fit_source.data.update(x=x_fit, y=fit.eval(x=x_fit))
|
|
|
|
x_bkg = []
|
|
y_bkg = []
|
|
xs_peak = []
|
|
ys_peak = []
|
|
comps = fit.eval_components(x=x_fit)
|
|
for i, model in enumerate(fit_params):
|
|
if "linear" in model:
|
|
x_bkg = x_fit
|
|
y_bkg = comps[f"f{i}_"]
|
|
|
|
elif any(val in model for val in ("gaussian", "voigt", "pvoigt")):
|
|
xs_peak.append(x_fit)
|
|
ys_peak.append(comps[f"f{i}_"])
|
|
|
|
plot_bkg_source.data.update(x=x_bkg, y=y_bkg)
|
|
plot_peak_source.data.update(xs=xs_peak, ys=ys_peak)
|
|
|
|
fit_output_textinput.value = fit.fit_report()
|
|
|
|
else:
|
|
plot_fit_source.data.update(x=[], y=[])
|
|
plot_bkg_source.data.update(x=[], y=[])
|
|
plot_peak_source.data.update(xs=[], ys=[])
|
|
fit_output_textinput.value = ""
|
|
|
|
def _update_overview():
|
|
xs = []
|
|
ys = []
|
|
param = []
|
|
x = []
|
|
y = []
|
|
par = []
|
|
for s, p in enumerate(scan_table_source.data["param"]):
|
|
if p is not None:
|
|
scan = det_data[s]
|
|
scan_motor = scan["scan_motor"]
|
|
xs.append(scan[scan_motor])
|
|
x.extend(scan[scan_motor])
|
|
ys.append(scan["counts"])
|
|
y.extend([float(p)] * len(scan[scan_motor]))
|
|
param.append(float(p))
|
|
par.extend(scan["counts"])
|
|
|
|
if det_data:
|
|
scan_motor = det_data[0]["scan_motor"]
|
|
ov_plot.axis[0].axis_label = scan_motor
|
|
ov_param_plot.axis[0].axis_label = scan_motor
|
|
|
|
ov_plot_mline_source.data.update(xs=xs, ys=ys, param=param, color=color_palette(len(xs)))
|
|
|
|
if y:
|
|
mapper["transform"].low = np.min([np.min(y) for y in ys])
|
|
mapper["transform"].high = np.max([np.max(y) for y in ys])
|
|
ov_param_plot_scatter_source.data.update(x=x, y=y, param=par)
|
|
|
|
if y:
|
|
interp_f = interpolate.interp2d(x, y, par)
|
|
x1, x2 = min(x), max(x)
|
|
y1, y2 = min(y), max(y)
|
|
image = interp_f(
|
|
np.linspace(x1, x2, ov_param_plot.inner_width // 10),
|
|
np.linspace(y1, y2, ov_param_plot.inner_height // 10),
|
|
assume_sorted=True,
|
|
)
|
|
ov_param_plot_image_source.data.update(
|
|
image=[image], x=[x1], y=[y1], dw=[x2 - x1], dh=[y2 - y1]
|
|
)
|
|
else:
|
|
ov_param_plot_image_source.data.update(image=[], x=[], y=[], dw=[], dh=[])
|
|
|
|
def _update_param_plot():
|
|
x = []
|
|
y = []
|
|
y_lower = []
|
|
y_upper = []
|
|
fit_param = fit_param_select.value
|
|
for s, p in zip(det_data, scan_table_source.data["param"]):
|
|
if "fit" in s and fit_param:
|
|
x.append(p)
|
|
param_fit_val = s["fit"].params[fit_param].value
|
|
param_fit_std = s["fit"].params[fit_param].stderr
|
|
y.append(param_fit_val)
|
|
y_lower.append(param_fit_val - param_fit_std)
|
|
y_upper.append(param_fit_val + param_fit_std)
|
|
|
|
param_plot_scatter_source.data.update(x=x, y=y, y_lower=y_lower, y_upper=y_upper)
|
|
|
|
# Main plot
|
|
plot = Plot(
|
|
x_range=DataRange1d(),
|
|
y_range=DataRange1d(only_visible=True),
|
|
plot_height=450,
|
|
plot_width=700,
|
|
)
|
|
|
|
plot.add_layout(LinearAxis(axis_label="Counts"), place="left")
|
|
plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")
|
|
|
|
plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
|
plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
|
|
|
plot_scatter_source = ColumnDataSource(dict(x=[0], y=[0], y_upper=[0], y_lower=[0]))
|
|
plot_scatter = plot.add_glyph(
|
|
plot_scatter_source, Scatter(x="x", y="y", line_color="steelblue", fill_color="steelblue")
|
|
)
|
|
plot.add_layout(Whisker(source=plot_scatter_source, base="x", upper="y_upper", lower="y_lower"))
|
|
|
|
plot_fit_source = ColumnDataSource(dict(x=[0], y=[0]))
|
|
plot_fit = plot.add_glyph(plot_fit_source, Line(x="x", y="y"))
|
|
|
|
plot_bkg_source = ColumnDataSource(dict(x=[0], y=[0]))
|
|
plot_bkg = plot.add_glyph(
|
|
plot_bkg_source, Line(x="x", y="y", line_color="green", line_dash="dashed")
|
|
)
|
|
|
|
plot_peak_source = ColumnDataSource(dict(xs=[[0]], ys=[[0]]))
|
|
plot_peak = plot.add_glyph(
|
|
plot_peak_source, MultiLine(xs="xs", ys="ys", line_color="red", line_dash="dashed")
|
|
)
|
|
|
|
fit_from_span = Span(location=None, dimension="height", line_dash="dashed")
|
|
plot.add_layout(fit_from_span)
|
|
|
|
fit_to_span = Span(location=None, dimension="height", line_dash="dashed")
|
|
plot.add_layout(fit_to_span)
|
|
|
|
plot.add_layout(
|
|
Legend(
|
|
items=[
|
|
("data", [plot_scatter]),
|
|
("best fit", [plot_fit]),
|
|
("peak", [plot_peak]),
|
|
("linear", [plot_bkg]),
|
|
],
|
|
location="top_left",
|
|
click_policy="hide",
|
|
)
|
|
)
|
|
|
|
plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
|
|
plot.toolbar.logo = None
|
|
|
|
# Overview multilines plot
|
|
ov_plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_height=450, plot_width=700)
|
|
|
|
ov_plot.add_layout(LinearAxis(axis_label="Counts"), place="left")
|
|
ov_plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")
|
|
|
|
ov_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
|
ov_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
|
|
|
ov_plot_mline_source = ColumnDataSource(dict(xs=[], ys=[], param=[], color=[]))
|
|
ov_plot.add_glyph(ov_plot_mline_source, MultiLine(xs="xs", ys="ys", line_color="color"))
|
|
|
|
hover_tool = HoverTool(tooltips=[("param", "@param")])
|
|
ov_plot.add_tools(PanTool(), WheelZoomTool(), hover_tool, ResetTool())
|
|
|
|
ov_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
|
|
ov_plot.toolbar.logo = None
|
|
|
|
# Overview perams plot
|
|
ov_param_plot = Plot(
|
|
x_range=DataRange1d(), y_range=DataRange1d(), plot_height=450, plot_width=700
|
|
)
|
|
|
|
ov_param_plot.add_layout(LinearAxis(axis_label="Param"), place="left")
|
|
ov_param_plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")
|
|
|
|
ov_param_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
|
ov_param_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
|
|
|
ov_param_plot_image_source = ColumnDataSource(dict(image=[], x=[], y=[], dw=[], dh=[]))
|
|
ov_param_plot.add_glyph(
|
|
ov_param_plot_image_source, Image(image="image", x="x", y="y", dw="dw", dh="dh")
|
|
)
|
|
|
|
ov_param_plot_scatter_source = ColumnDataSource(dict(x=[], y=[], param=[]))
|
|
mapper = linear_cmap(field_name="param", palette=Turbo256, low=0, high=50)
|
|
ov_param_plot.add_glyph(
|
|
ov_param_plot_scatter_source,
|
|
Scatter(x="x", y="y", line_color=mapper, fill_color=mapper, size=10),
|
|
)
|
|
|
|
ov_param_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
|
|
ov_param_plot.toolbar.logo = None
|
|
|
|
# Parameter plot
|
|
param_plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_height=400, plot_width=700)
|
|
|
|
param_plot.add_layout(LinearAxis(axis_label="Fit parameter"), place="left")
|
|
param_plot.add_layout(LinearAxis(axis_label="Parameter"), place="below")
|
|
|
|
param_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
|
param_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
|
|
|
param_plot_scatter_source = ColumnDataSource(dict(x=[], y=[], y_upper=[], y_lower=[]))
|
|
param_plot.add_glyph(param_plot_scatter_source, Scatter(x="x", y="y"))
|
|
param_plot.add_layout(
|
|
Whisker(source=param_plot_scatter_source, base="x", upper="y_upper", lower="y_lower")
|
|
)
|
|
|
|
param_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
|
|
param_plot.toolbar.logo = None
|
|
|
|
def fit_param_select_callback(_attr, _old, _new):
|
|
_update_param_plot()
|
|
|
|
fit_param_select = Select(title="Fit parameter", options=[], width=145)
|
|
fit_param_select.on_change("value", fit_param_select_callback)
|
|
|
|
# Plot tabs
|
|
plots = Tabs(
|
|
tabs=[
|
|
Panel(child=plot, title="single scan"),
|
|
Panel(child=ov_plot, title="overview"),
|
|
Panel(child=ov_param_plot, title="overview map"),
|
|
Panel(child=column(param_plot, row(fit_param_select)), title="parameter plot"),
|
|
]
|
|
)
|
|
|
|
# Scan select
|
|
def scan_table_select_callback(_attr, old, new):
|
|
if not new:
|
|
# skip empty selections
|
|
return
|
|
|
|
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
|
|
if len(new) > 1:
|
|
# drop selection to the previous one
|
|
scan_table_source.selected.indices = old
|
|
return
|
|
|
|
if len(old) > 1:
|
|
# skip unnecessary update caused by selection drop
|
|
return
|
|
|
|
_update_single_scan_plot()
|
|
|
|
def scan_table_source_callback(_attr, _old, new):
|
|
# unfortunately, we don't know if the change comes from data update or user input
|
|
# also `old` and `new` are the same for non-scalars
|
|
for scan, export in zip(det_data, new["export"]):
|
|
scan["export"] = export
|
|
_update_overview()
|
|
_update_param_plot()
|
|
_update_preview()
|
|
|
|
scan_table_source = ColumnDataSource(dict(file=[], scan=[], param=[], fit=[], export=[]))
|
|
scan_table_source.on_change("data", scan_table_source_callback)
|
|
scan_table_source.selected.on_change("indices", scan_table_select_callback)
|
|
|
|
scan_table = DataTable(
|
|
source=scan_table_source,
|
|
columns=[
|
|
TableColumn(field="file", title="file", editor=CellEditor(), width=150),
|
|
TableColumn(field="scan", title="scan", editor=CellEditor(), width=50),
|
|
TableColumn(field="param", title="param", editor=NumberEditor(), width=50),
|
|
TableColumn(field="fit", title="Fit", editor=CellEditor(), width=50),
|
|
TableColumn(field="export", title="Export", editor=CheckboxEditor(), width=50),
|
|
],
|
|
width=410, # +60 because of the index column
|
|
height=350,
|
|
editable=True,
|
|
autosize_mode="none",
|
|
)
|
|
|
|
merge_from_select = Select(title="scan:", width=145)
|
|
|
|
def merge_button_callback():
|
|
scan_into = _get_selected_scan()
|
|
scan_from = det_data[int(merge_from_select.value)]
|
|
|
|
if scan_into is scan_from:
|
|
print("WARNING: Selected scans for merging are identical")
|
|
return
|
|
|
|
pyzebra.merge_scans(scan_into, scan_from)
|
|
_update_table()
|
|
_update_single_scan_plot()
|
|
_update_overview()
|
|
|
|
merge_button = Button(label="Merge into current", width=145)
|
|
merge_button.on_click(merge_button_callback)
|
|
|
|
def restore_button_callback():
|
|
pyzebra.restore_scan(_get_selected_scan())
|
|
_update_table()
|
|
_update_single_scan_plot()
|
|
_update_overview()
|
|
|
|
restore_button = Button(label="Restore scan", width=145)
|
|
restore_button.on_click(restore_button_callback)
|
|
|
|
def _get_selected_scan():
|
|
return det_data[scan_table_source.selected.indices[0]]
|
|
|
|
def param_select_callback(_attr, _old, _new):
|
|
_update_table()
|
|
|
|
param_select = Select(
|
|
title="Parameter:",
|
|
options=["user defined", "temp", "mf", "h", "k", "l"],
|
|
value="user defined",
|
|
width=145,
|
|
)
|
|
param_select.on_change("value", param_select_callback)
|
|
|
|
def fit_from_spinner_callback(_attr, _old, new):
|
|
fit_from_span.location = new
|
|
|
|
fit_from_spinner = Spinner(title="Fit from:", width=145)
|
|
fit_from_spinner.on_change("value", fit_from_spinner_callback)
|
|
|
|
def fit_to_spinner_callback(_attr, _old, new):
|
|
fit_to_span.location = new
|
|
|
|
fit_to_spinner = Spinner(title="to:", width=145)
|
|
fit_to_spinner.on_change("value", fit_to_spinner_callback)
|
|
|
|
def fitparams_add_dropdown_callback(click):
|
|
# bokeh requires (str, str) for MultiSelect options
|
|
new_tag = f"{click.item}-{fitparams_select.tags[0]}"
|
|
fitparams_select.options.append((new_tag, click.item))
|
|
fit_params[new_tag] = fitparams_factory(click.item)
|
|
fitparams_select.tags[0] += 1
|
|
|
|
fitparams_add_dropdown = Dropdown(
|
|
label="Add fit function",
|
|
menu=[
|
|
("Linear", "linear"),
|
|
("Gaussian", "gaussian"),
|
|
("Voigt", "voigt"),
|
|
("Pseudo Voigt", "pvoigt"),
|
|
# ("Pseudo Voigt1", "pseudovoigt1"),
|
|
],
|
|
width=145,
|
|
)
|
|
fitparams_add_dropdown.on_click(fitparams_add_dropdown_callback)
|
|
|
|
def fitparams_select_callback(_attr, old, new):
|
|
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
|
|
if len(new) > 1:
|
|
# drop selection to the previous one
|
|
fitparams_select.value = old
|
|
return
|
|
|
|
if len(old) > 1:
|
|
# skip unnecessary update caused by selection drop
|
|
return
|
|
|
|
if new:
|
|
fitparams_table_source.data.update(fit_params[new[0]])
|
|
else:
|
|
fitparams_table_source.data.update(dict(param=[], value=[], vary=[], min=[], max=[]))
|
|
|
|
fitparams_select = MultiSelect(options=[], height=120, width=145)
|
|
fitparams_select.tags = [0]
|
|
fitparams_select.on_change("value", fitparams_select_callback)
|
|
|
|
def fitparams_remove_button_callback():
|
|
if fitparams_select.value:
|
|
sel_tag = fitparams_select.value[0]
|
|
del fit_params[sel_tag]
|
|
for elem in fitparams_select.options:
|
|
if elem[0] == sel_tag:
|
|
fitparams_select.options.remove(elem)
|
|
break
|
|
|
|
fitparams_select.value = []
|
|
|
|
fitparams_remove_button = Button(label="Remove fit function", width=145)
|
|
fitparams_remove_button.on_click(fitparams_remove_button_callback)
|
|
|
|
def fitparams_factory(function):
|
|
if function == "linear":
|
|
params = ["slope", "intercept"]
|
|
elif function == "gaussian":
|
|
params = ["amplitude", "center", "sigma"]
|
|
elif function == "voigt":
|
|
params = ["amplitude", "center", "sigma", "gamma"]
|
|
elif function == "pvoigt":
|
|
params = ["amplitude", "center", "sigma", "fraction"]
|
|
elif function == "pseudovoigt1":
|
|
params = ["amplitude", "center", "g_sigma", "l_sigma", "fraction"]
|
|
else:
|
|
raise ValueError("Unknown fit function")
|
|
|
|
n = len(params)
|
|
fitparams = dict(
|
|
param=params, value=[None] * n, vary=[True] * n, min=[None] * n, max=[None] * n,
|
|
)
|
|
|
|
if function == "linear":
|
|
fitparams["value"] = [0, 1]
|
|
fitparams["vary"] = [False, True]
|
|
fitparams["min"] = [None, 0]
|
|
|
|
elif function == "gaussian":
|
|
fitparams["min"] = [0, None, None]
|
|
|
|
return fitparams
|
|
|
|
fitparams_table_source = ColumnDataSource(dict(param=[], value=[], vary=[], min=[], max=[]))
|
|
fitparams_table = DataTable(
|
|
source=fitparams_table_source,
|
|
columns=[
|
|
TableColumn(field="param", title="Parameter", editor=CellEditor()),
|
|
TableColumn(field="value", title="Value", editor=NumberEditor()),
|
|
TableColumn(field="vary", title="Vary", editor=CheckboxEditor()),
|
|
TableColumn(field="min", title="Min", editor=NumberEditor()),
|
|
TableColumn(field="max", title="Max", editor=NumberEditor()),
|
|
],
|
|
height=200,
|
|
width=350,
|
|
index_position=None,
|
|
editable=True,
|
|
auto_edit=True,
|
|
)
|
|
|
|
# start with `background` and `gauss` fit functions added
|
|
fitparams_add_dropdown_callback(types.SimpleNamespace(item="linear"))
|
|
fitparams_add_dropdown_callback(types.SimpleNamespace(item="gaussian"))
|
|
fitparams_select.value = ["gaussian-1"] # add selection to gauss
|
|
|
|
fit_output_textinput = TextAreaInput(title="Fit results:", width=750, height=200)
|
|
|
|
def proc_all_button_callback():
|
|
for scan in det_data:
|
|
if scan["export"]:
|
|
pyzebra.fit_scan(
|
|
scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value
|
|
)
|
|
pyzebra.get_area(
|
|
scan,
|
|
area_method=AREA_METHODS[area_method_radiobutton.active],
|
|
lorentz=lorentz_checkbox.active,
|
|
)
|
|
|
|
_update_single_scan_plot()
|
|
_update_overview()
|
|
_update_table()
|
|
|
|
for scan in det_data:
|
|
if "fit" in scan:
|
|
options = list(scan["fit"].params.keys())
|
|
fit_param_select.options = options
|
|
fit_param_select.value = options[0]
|
|
break
|
|
|
|
proc_all_button = Button(label="Process All", button_type="primary", width=145)
|
|
proc_all_button.on_click(proc_all_button_callback)
|
|
|
|
def proc_button_callback():
|
|
scan = _get_selected_scan()
|
|
pyzebra.fit_scan(
|
|
scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value
|
|
)
|
|
pyzebra.get_area(
|
|
scan,
|
|
area_method=AREA_METHODS[area_method_radiobutton.active],
|
|
lorentz=lorentz_checkbox.active,
|
|
)
|
|
|
|
_update_single_scan_plot()
|
|
_update_overview()
|
|
_update_table()
|
|
|
|
for scan in det_data:
|
|
if "fit" in scan:
|
|
options = list(scan["fit"].params.keys())
|
|
fit_param_select.options = options
|
|
fit_param_select.value = options[0]
|
|
break
|
|
|
|
proc_button = Button(label="Process Current", width=145)
|
|
proc_button.on_click(proc_button_callback)
|
|
|
|
area_method_div = Div(text="Intensity:", margin=(5, 5, 0, 5))
|
|
area_method_radiobutton = RadioGroup(labels=["Function", "Area"], active=0, width=145)
|
|
|
|
lorentz_checkbox = CheckboxGroup(labels=["Lorentz Correction"], width=145, margin=(13, 5, 5, 5))
|
|
|
|
export_preview_textinput = TextAreaInput(title="Export file preview:", width=450, height=400)
|
|
|
|
def _update_preview():
|
|
with tempfile.TemporaryDirectory() as temp_dir:
|
|
temp_file = temp_dir + "/temp"
|
|
export_data = []
|
|
param_data = []
|
|
for scan, param in zip(det_data, scan_table_source.data["param"]):
|
|
if scan["export"]:
|
|
export_data.append(scan)
|
|
param_data.append(param)
|
|
|
|
pyzebra.export_param_study(export_data, param_data, temp_file)
|
|
|
|
exported_content = ""
|
|
file_content = []
|
|
|
|
fname = temp_file
|
|
if os.path.isfile(fname):
|
|
with open(fname) as f:
|
|
content = f.read()
|
|
exported_content += content
|
|
else:
|
|
content = ""
|
|
file_content.append(content)
|
|
|
|
js_data.data.update(content=file_content)
|
|
export_preview_textinput.value = exported_content
|
|
|
|
save_button = Button(label="Download File", button_type="success", width=220)
|
|
save_button.js_on_click(CustomJS(args={"js_data": js_data}, code=javaScript))
|
|
|
|
fitpeak_controls = row(
|
|
column(fitparams_add_dropdown, fitparams_select, fitparams_remove_button),
|
|
fitparams_table,
|
|
Spacer(width=20),
|
|
column(fit_from_spinner, lorentz_checkbox, area_method_div, area_method_radiobutton),
|
|
column(fit_to_spinner, proc_button, proc_all_button),
|
|
)
|
|
|
|
scan_layout = column(
|
|
scan_table,
|
|
row(monitor_spinner, scan_motor_select, param_select),
|
|
row(column(Spacer(height=19), row(restore_button, merge_button)), merge_from_select),
|
|
)
|
|
|
|
import_layout = column(
|
|
file_select,
|
|
row(file_open_button, file_append_button),
|
|
upload_div,
|
|
upload_button,
|
|
append_upload_div,
|
|
append_upload_button,
|
|
)
|
|
|
|
export_layout = column(export_preview_textinput, row(save_button))
|
|
|
|
tab_layout = column(
|
|
row(import_layout, scan_layout, plots, Spacer(width=30), export_layout),
|
|
row(fitpeak_controls, fit_output_textinput),
|
|
)
|
|
|
|
return Panel(child=tab_layout, title="param study")
|