Files
pyzebra/pyzebra/app/plot_hkl.py
Ivan Usov 015eb095a4 Prepare for transition to bokeh/3
* Rename plot_height -> height
* Rename plot_width -> width
* Replace on_click callbacks of RadioGroup and CheckboxGroup
2023-06-20 15:54:47 +02:00

546 lines
20 KiB
Python

import base64
import io
import os
import numpy as np
from bokeh.layouts import column, row
from bokeh.models import (
Arrow,
Button,
CheckboxGroup,
ColumnDataSource,
Div,
FileInput,
HoverTool,
Legend,
LegendItem,
NormalHead,
NumericInput,
RadioGroup,
Spinner,
TextAreaInput,
TextInput,
)
from bokeh.palettes import Dark2
from bokeh.plotting import figure
from scipy.integrate import simpson, trapezoid
import pyzebra
class PlotHKL:
def __init__(self):
_update_slice = None
measured_data_div = Div(text="Measured <b>CCL</b> data:")
measured_data = FileInput(accept=".ccl", multiple=True, width=200)
upload_hkl_div = Div(text="Open hkl/mhkl data:")
upload_hkl_fi = FileInput(accept=".hkl,.mhkl", multiple=True, width=200)
min_grid_x = -10
max_grid_x = 10
min_grid_y = -10
max_grid_y = 10
cmap = Dark2[8]
syms = ["circle", "inverted_triangle", "square", "diamond", "star", "triangle"]
def _prepare_plotting():
orth_dir = list(map(float, hkl_normal.value.split()))
x_dir = list(map(float, hkl_in_plane_x.value.split()))
k = np.array(k_vectors.value.split()).astype(float).reshape(-1, 3)
tol_k = tol_k_ni.value
# multiplier for resolution function (in case of samples with large mosaicity)
res_mult = res_mult_ni.value
md_fnames = measured_data.filename
md_fdata = measured_data.value
# Load first data file, read angles and define matrices to perform conversion to cartesian
# coordinates and back
with io.StringIO(base64.b64decode(md_fdata[0]).decode()) as file:
_, ext = os.path.splitext(md_fnames[0])
try:
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {md_fnames[0]}")
return None
alpha = file_data[0]["alpha_cell"] * np.pi / 180.0
beta = file_data[0]["beta_cell"] * np.pi / 180.0
gamma = file_data[0]["gamma_cell"] * np.pi / 180.0
# reciprocal angle parameters
beta_star = np.arccos(
(np.cos(alpha) * np.cos(gamma) - np.cos(beta)) / (np.sin(alpha) * np.sin(gamma))
)
gamma_star = np.arccos(
(np.cos(alpha) * np.cos(beta) - np.cos(gamma)) / (np.sin(alpha) * np.sin(beta))
)
# conversion matrix
M = np.array(
[
[1, np.cos(gamma_star), np.cos(beta_star)],
[0, np.sin(gamma_star), -np.sin(beta_star) * np.cos(alpha)],
[0, 0, np.sin(beta_star) * np.sin(alpha)],
]
)
# Get last lattice vector
y_dir = np.cross(x_dir, orth_dir) # Second axes of plotting plane
# Rescale such that smallest element of y-dir vector is 1
y_dir2 = y_dir[y_dir != 0]
min_val = np.min(np.abs(y_dir2))
y_dir = y_dir / min_val
# Possibly flip direction of ydir:
if y_dir[np.argmax(abs(y_dir))] < 0:
y_dir = -y_dir
# Display the resulting y_dir
hkl_in_plane_y.value = " ".join([f"{val:.1f}" for val in y_dir])
# Save length of lattice vectors
x_length = np.linalg.norm(x_dir)
y_length = np.linalg.norm(y_dir)
# Save str for labels
xlabel_str = " ".join(map(str, x_dir))
ylabel_str = " ".join(map(str, y_dir))
# Normalize lattice vectors
y_dir = y_dir / np.linalg.norm(y_dir)
x_dir = x_dir / np.linalg.norm(x_dir)
orth_dir = orth_dir / np.linalg.norm(orth_dir)
# Calculate cartesian equivalents of lattice vectors
x_c = np.matmul(M, x_dir)
y_c = np.matmul(M, y_dir)
o_c = np.matmul(M, orth_dir)
# Calulcate vertical direction in plotting plame
y_vert = np.cross(x_c, o_c) # verical direction in plotting plane
if y_vert[np.argmax(abs(y_vert))] < 0:
y_vert = -y_vert
y_vert = y_vert / np.linalg.norm(y_vert)
# Normalize all directions
y_c = y_c / np.linalg.norm(y_c)
x_c = x_c / np.linalg.norm(x_c)
o_c = o_c / np.linalg.norm(o_c)
# Read all data
hkl_coord = []
intensity_vec = []
k_flag_vec = []
file_flag_vec = []
res_vec = []
res_N = 10
for j, md_fname in enumerate(md_fnames):
with io.StringIO(base64.b64decode(md_fdata[j]).decode()) as file:
_, ext = os.path.splitext(md_fname)
try:
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {md_fname}")
return None
pyzebra.normalize_dataset(file_data)
# Loop throguh all data
for scan in file_data:
om = scan["omega"]
gammad = scan["twotheta"]
chi = scan["chi"]
phi = scan["phi"]
nud = 0 # 1d detector
ub_inv = np.linalg.inv(scan["ub"])
counts = scan["counts"]
wave = scan["wavelength"]
# Calculate resolution in degrees
expr = np.tan(gammad / 2 * np.pi / 180)
fwhm = np.sqrt(0.4639 * expr**2 - 0.4452 * expr + 0.1506) * res_mult
res = 4 * np.pi / wave * np.sin(fwhm * np.pi / 180)
# Get first and final hkl
hkl1 = pyzebra.ang2hkl_1d(wave, gammad, om[0], chi, phi, nud, ub_inv)
hkl2 = pyzebra.ang2hkl_1d(wave, gammad, om[-1], chi, phi, nud, ub_inv)
# Get hkl at best intensity
hkl_m = pyzebra.ang2hkl_1d(
wave, gammad, om[np.argmax(counts)], chi, phi, nud, ub_inv
)
# Estimate intensity for marker size scaling
y_bkg = [counts[0], counts[-1]]
x_bkg = [om[0], om[-1]]
c = int(simpson(counts, x=om) - trapezoid(y_bkg, x=x_bkg))
# Recognize k_flag_vec
reduced_hkl_m = np.minimum(1 - hkl_m % 1, hkl_m % 1)
for ind, _k in enumerate(k):
if all(np.abs(reduced_hkl_m - _k) < tol_k):
k_flag_vec.append(ind)
break
else:
# not required
continue
# Save data
hkl_coord.append([hkl1, hkl2, hkl_m])
intensity_vec.append(c)
file_flag_vec.append(j)
res_vec.append(res)
x_spacing = np.dot(M @ x_dir, x_c) * x_length
y_spacing = np.dot(M @ y_dir, y_vert) * y_length
y_spacingx = np.dot(M @ y_dir, x_c) * y_length
# Plot coordinate system
arrow1.x_end = x_spacing
arrow1.y_end = 0
arrow2.x_end = y_spacingx
arrow2.y_end = y_spacing
# Add labels
kvect_source.data.update(
x=[x_spacing / 4, -0.1],
y=[x_spacing / 4 - 0.5, y_spacing / 2],
text=[xlabel_str, ylabel_str],
)
# Plot grid lines
xs, ys = [], []
xs_minor, ys_minor = [], []
for yy in np.arange(min_grid_y, max_grid_y, 1):
# Calculate end and start point
hkl1 = min_grid_x * x_dir + yy * y_dir
hkl2 = max_grid_x * x_dir + yy * y_dir
hkl1 = M @ hkl1
hkl2 = M @ hkl2
# Project points onto axes
x1 = np.dot(x_c, hkl1) * x_length
y1 = np.dot(y_vert, hkl1) * y_length
x2 = np.dot(x_c, hkl2) * x_length
y2 = np.dot(y_vert, hkl2) * y_length
xs.append([x1, x2])
ys.append([y1, y2])
for xx in np.arange(min_grid_x, max_grid_x, 1):
# Calculate end and start point
hkl1 = xx * x_dir + min_grid_y * y_dir
hkl2 = xx * x_dir + max_grid_y * y_dir
hkl1 = M @ hkl1
hkl2 = M @ hkl2
# Project points onto axes
x1 = np.dot(x_c, hkl1) * x_length
y1 = np.dot(y_vert, hkl1) * y_length
x2 = np.dot(x_c, hkl2) * x_length
y2 = np.dot(y_vert, hkl2) * y_length
xs.append([x1, x2])
ys.append([y1, y2])
for yy in np.arange(min_grid_y, max_grid_y, 0.5):
# Calculate end and start point
hkl1 = min_grid_x * x_dir + yy * y_dir
hkl2 = max_grid_x * x_dir + yy * y_dir
hkl1 = M @ hkl1
hkl2 = M @ hkl2
# Project points onto axes
x1 = np.dot(x_c, hkl1) * x_length
y1 = np.dot(y_vert, hkl1) * y_length
x2 = np.dot(x_c, hkl2) * x_length
y2 = np.dot(y_vert, hkl2) * y_length
xs_minor.append([x1, x2])
ys_minor.append([y1, y2])
for xx in np.arange(min_grid_x, max_grid_x, 0.5):
# Calculate end and start point
hkl1 = xx * x_dir + min_grid_y * y_dir
hkl2 = xx * x_dir + max_grid_y * y_dir
hkl1 = M @ hkl1
hkl2 = M @ hkl2
# Project points onto axes
x1 = np.dot(x_c, hkl1) * x_length
y1 = np.dot(y_vert, hkl1) * y_length
x2 = np.dot(x_c, hkl2) * x_length
y2 = np.dot(y_vert, hkl2) * y_length
xs_minor.append([x1, x2])
ys_minor.append([y1, y2])
grid_source.data.update(xs=xs, ys=ys)
minor_grid_source.data.update(xs=xs_minor, ys=ys_minor)
# Prepare hkl/mhkl data
hkl_coord2 = []
for j, fname in enumerate(upload_hkl_fi.filename):
with io.StringIO(base64.b64decode(upload_hkl_fi.value[j]).decode()) as file:
_, ext = os.path.splitext(fname)
try:
fdata = pyzebra.parse_hkl(file, ext)
except:
print(f"Error loading {fname}")
return
for ind in range(len(fdata["counts"])):
# Recognize k_flag_vec
hkl = np.array([fdata["h"][ind], fdata["k"][ind], fdata["l"][ind]])
# Save data
hkl_coord2.append(hkl)
def _update_slice():
cut_tol = hkl_delta.value
cut_or = hkl_cut.value
# different symbols based on file number
file_flag = 0 in disting_opt_cb.active
# scale marker size according to intensity
intensity_flag = 1 in disting_opt_cb.active
# use color to mark different propagation vectors
prop_legend_flag = 2 in disting_opt_cb.active
# use resolution ellipsis
res_flag = disting_opt_rb.active
el_x, el_y, el_w, el_h, el_c = [], [], [], [], []
scan_xs, scan_ys, scan_x, scan_y = [], [], [], []
scan_m, scan_s, scan_c, scan_l, scan_hkl = [], [], [], [], []
for j in range(len(hkl_coord)):
# Get middle hkl from list
hklm = M @ hkl_coord[j][2]
# Decide if point is in the cut
proj = np.dot(hklm, o_c)
if abs(proj - cut_or) >= cut_tol:
continue
hkl1 = M @ hkl_coord[j][0]
hkl2 = M @ hkl_coord[j][1]
# Project onto axes
hkl1x = np.dot(hkl1, x_c)
hkl1y = np.dot(hkl1, y_vert)
hkl2x = np.dot(hkl2, x_c)
hkl2y = np.dot(hkl2, y_vert)
hklmx = np.dot(hklm, x_c)
hklmy = np.dot(hklm, y_vert)
if intensity_flag:
markersize = max(6, int(intensity_vec[j] / max(intensity_vec) * 30))
else:
markersize = 6
if file_flag:
plot_symbol = syms[file_flag_vec[j]]
else:
plot_symbol = "circle"
if prop_legend_flag:
col_value = cmap[k_flag_vec[j]]
else:
col_value = "black"
if res_flag:
# Generate series of circles along scan line
res = res_vec[j]
el_x.extend(np.linspace(hkl1x, hkl2x, num=res_N))
el_y.extend(np.linspace(hkl1y, hkl2y, num=res_N))
el_w.extend([res / 2] * res_N)
el_h.extend([res / 2] * res_N)
el_c.extend([col_value] * res_N)
else:
# Plot scan line
scan_xs.append([hkl1x, hkl2x])
scan_ys.append([hkl1y, hkl2y])
# Plot middle point of scan
scan_x.append(hklmx)
scan_y.append(hklmy)
scan_m.append(plot_symbol)
scan_s.append(markersize)
# Color and legend label
scan_c.append(col_value)
scan_l.append(md_fnames[file_flag_vec[j]])
scan_hkl.append(hkl_coord[j][2])
ellipse_source.data.update(x=el_x, y=el_y, width=el_w, height=el_h, c=el_c)
scan_source.data.update(
xs=scan_xs,
ys=scan_ys,
x=scan_x,
y=scan_y,
m=scan_m,
s=scan_s,
c=scan_c,
l=scan_l,
hkl=scan_hkl,
)
# Legend items for different file entries (symbol)
legend_items = []
if not res_flag and file_flag:
labels, inds = np.unique(scan_source.data["l"], return_index=True)
for label, ind in zip(labels, inds):
legend_items.append(LegendItem(label=label, renderers=[scatter], index=ind))
# Legend items for propagation vector (color)
if prop_legend_flag:
if res_flag:
source, render = ellipse_source, ellipse
else:
source, render = scan_source, mline
labels, inds = np.unique(source.data["c"], return_index=True)
for label, ind in zip(labels, inds):
label = f"k={k[cmap.index(label)]}"
legend_items.append(LegendItem(label=label, renderers=[render], index=ind))
plot.legend.items = legend_items
scan_x2, scan_y2, scan_hkl2 = [], [], []
for j in range(len(hkl_coord2)):
# Get middle hkl from list
hklm = M @ hkl_coord2[j]
# Decide if point is in the cut
proj = np.dot(hklm, o_c)
if abs(proj - cut_or) >= cut_tol:
continue
# Project onto axes
hklmx = np.dot(hklm, x_c)
hklmy = np.dot(hklm, y_vert)
scan_x2.append(hklmx)
scan_y2.append(hklmy)
scan_hkl2.append(hkl_coord2[j])
scatter_source2.data.update(x=scan_x2, y=scan_y2, hkl=scan_hkl2)
return _update_slice
def plot_file_callback():
nonlocal _update_slice
_update_slice = _prepare_plotting()
_update_slice()
plot_file = Button(label="Plot selected file(s)", button_type="primary", width=200)
plot_file.on_click(plot_file_callback)
plot = figure(height=550, width=550 + 32, tools="pan,wheel_zoom,reset")
plot.toolbar.logo = None
plot.xaxis.visible = False
plot.xgrid.visible = False
plot.yaxis.visible = False
plot.ygrid.visible = False
arrow1 = Arrow(x_start=0, y_start=0, x_end=0, y_end=0, end=NormalHead(size=10))
plot.add_layout(arrow1)
arrow2 = Arrow(x_start=0, y_start=0, x_end=0, y_end=0, end=NormalHead(size=10))
plot.add_layout(arrow2)
kvect_source = ColumnDataSource(dict(x=[], y=[], text=[]))
plot.text(source=kvect_source)
grid_source = ColumnDataSource(dict(xs=[], ys=[]))
plot.multi_line(source=grid_source, line_color="gray")
minor_grid_source = ColumnDataSource(dict(xs=[], ys=[]))
plot.multi_line(source=minor_grid_source, line_color="gray", line_dash="dotted")
ellipse_source = ColumnDataSource(dict(x=[], y=[], width=[], height=[], c=[]))
ellipse = plot.ellipse(source=ellipse_source, fill_color="c", line_color="c")
scan_source = ColumnDataSource(
dict(xs=[], ys=[], x=[], y=[], m=[], s=[], c=[], l=[], hkl=[])
)
mline = plot.multi_line(source=scan_source, line_color="c")
scatter = plot.scatter(
source=scan_source, marker="m", size="s", fill_color="c", line_color="c"
)
scatter_source2 = ColumnDataSource(dict(x=[], y=[], hkl=[]))
scatter2 = plot.scatter(
source=scatter_source2, size=4, fill_color="green", line_color="green"
)
plot.x_range.renderers = [ellipse, mline, scatter, scatter2]
plot.y_range.renderers = [ellipse, mline, scatter, scatter2]
plot.add_layout(Legend(items=[], location="top_left", click_policy="hide"))
plot.add_tools(HoverTool(renderers=[scatter, scatter2], tooltips=[("hkl", "@hkl")]))
hkl_div = Div(text="HKL:", margin=(5, 5, 0, 5))
hkl_normal = TextInput(title="normal", value="0 0 1", width=70)
def hkl_cut_callback(_attr, _old, _new):
if _update_slice is not None:
_update_slice()
hkl_cut = Spinner(title="cut", value=0, step=0.1, width=70)
hkl_cut.on_change("value_throttled", hkl_cut_callback)
hkl_delta = NumericInput(title="delta", value=0.1, mode="float", width=70)
hkl_in_plane_x = TextInput(title="in-plane X", value="1 0 0", width=70)
hkl_in_plane_y = TextInput(title="in-plane Y", value="", width=100, disabled=True)
disting_opt_div = Div(text="Distinguish options:", margin=(5, 5, 0, 5))
disting_opt_cb = CheckboxGroup(
labels=["files (symbols)", "intensities (size)", "k vectors nucl/magn (colors)"],
active=[0, 1, 2],
width=200,
)
disting_opt_rb = RadioGroup(
labels=["scan direction", "resolution ellipsoid"], active=0, width=200
)
k_vectors = TextAreaInput(
title="k vectors:", value="0.0 0.0 0.0\n0.5 0.0 0.0\n0.5 0.5 0.0", width=150
)
res_mult_ni = NumericInput(title="Resolution mult:", value=10, mode="int", width=100)
tol_k_ni = NumericInput(title="k tolerance:", value=0.01, mode="float", width=100)
def show_legend_cb_callback(_attr, _old, new):
plot.legend.visible = 0 in new
show_legend_cb = CheckboxGroup(labels=["Show legend"], active=[0])
show_legend_cb.on_change("active", show_legend_cb_callback)
layout = column(
row(
column(row(measured_data_div, measured_data), row(upload_hkl_div, upload_hkl_fi)),
plot_file,
),
row(
plot,
column(
hkl_div,
row(hkl_normal, hkl_cut, hkl_delta),
row(hkl_in_plane_x, hkl_in_plane_y),
k_vectors,
row(tol_k_ni, res_mult_ni),
disting_opt_div,
disting_opt_cb,
disting_opt_rb,
show_legend_cb,
),
),
)
self.layout = layout