pyzebra/pyzebra/app/panel_param_study.py

772 lines
27 KiB
Python

import base64
import io
import itertools
import os
import tempfile
import types
import numpy as np
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import (
BasicTicker,
Button,
CellEditor,
CheckboxEditor,
CheckboxGroup,
ColumnDataSource,
CustomJS,
DataRange1d,
DataTable,
Div,
Dropdown,
FileInput,
Grid,
HoverTool,
Image,
Legend,
Line,
LinearAxis,
MultiLine,
MultiSelect,
NumberEditor,
Panel,
PanTool,
Plot,
RadioGroup,
ResetTool,
Scatter,
Select,
Spacer,
Span,
Spinner,
TableColumn,
Tabs,
TextAreaInput,
WheelZoomTool,
Whisker,
)
from bokeh.palettes import Category10, Turbo256
from bokeh.transform import linear_cmap
from scipy import interpolate
import pyzebra
from pyzebra.ccl_process import AREA_METHODS
javaScript = """
let j = 0;
for (let i = 0; i < js_data.data['fname'].length; i++) {
if (js_data.data['content'][i] === "") continue;
setTimeout(function() {
const blob = new Blob([js_data.data['content'][i]], {type: 'text/plain'})
const link = document.createElement('a');
document.body.appendChild(link);
const url = window.URL.createObjectURL(blob);
link.href = url;
link.download = js_data.data['fname'][i] + js_data.data['ext'][i];
link.click();
window.URL.revokeObjectURL(url);
document.body.removeChild(link);
}, 100 * j)
j++;
}
"""
def color_palette(n_colors):
palette = itertools.cycle(Category10[10])
return list(itertools.islice(palette, n_colors))
def create():
doc = curdoc()
det_data = []
fit_params = {}
js_data = ColumnDataSource(data=dict(content=[""], fname=[""], ext=[""]))
def file_select_update_for_proposal():
proposal_path = proposal_textinput.name
if proposal_path:
file_list = []
for file in os.listdir(proposal_path):
if file.endswith((".ccl", ".dat")):
file_list.append((os.path.join(proposal_path, file), file))
file_select.options = file_list
file_open_button.disabled = False
file_append_button.disabled = False
else:
file_select.options = []
file_open_button.disabled = True
file_append_button.disabled = True
doc.add_periodic_callback(file_select_update_for_proposal, 5000)
def proposal_textinput_callback(_attr, _old, _new):
file_select_update_for_proposal()
proposal_textinput = doc.proposal_textinput
proposal_textinput.on_change("name", proposal_textinput_callback)
def _init_datatable():
scan_list = [s["idx"] for s in det_data]
export = [s["export"] for s in det_data]
file_list = []
for scan in det_data:
file_list.append(os.path.basename(scan["original_filename"]))
scan_table_source.data.update(
file=file_list,
scan=scan_list,
param=[None] * len(scan_list),
fit=[0] * len(scan_list),
export=export,
)
scan_table_source.selected.indices = []
scan_table_source.selected.indices = [0]
scan_motor_select.options = det_data[0]["scan_motors"]
scan_motor_select.value = det_data[0]["scan_motor"]
param_select.value = "user defined"
file_select = MultiSelect(title="Available .ccl/.dat files:", width=210, height=250)
def file_open_button_callback():
nonlocal det_data
for f_ind, f_path in enumerate(file_select.value):
with open(f_path) as file:
base, ext = os.path.splitext(os.path.basename(f_path))
file_data = pyzebra.parse_1D(file, ext)
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
if f_ind == 0: # first file
det_data = file_data
pyzebra.merge_duplicates(det_data)
js_data.data.update(fname=[base])
else:
pyzebra.merge_datasets(det_data, file_data)
_init_datatable()
append_upload_button.disabled = False
file_open_button = Button(label="Open New", width=100, disabled=True)
file_open_button.on_click(file_open_button_callback)
def file_append_button_callback():
for f_path in file_select.value:
with open(f_path) as file:
_, ext = os.path.splitext(f_path)
file_data = pyzebra.parse_1D(file, ext)
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
pyzebra.merge_datasets(det_data, file_data)
_init_datatable()
file_append_button = Button(label="Append", width=100, disabled=True)
file_append_button.on_click(file_append_button_callback)
def upload_button_callback(_attr, _old, _new):
nonlocal det_data
det_data = []
for f_str, f_name in zip(upload_button.value, upload_button.filename):
with io.StringIO(base64.b64decode(f_str).decode()) as file:
base, ext = os.path.splitext(f_name)
file_data = pyzebra.parse_1D(file, ext)
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
if not det_data: # first file
det_data = file_data
pyzebra.merge_duplicates(det_data)
js_data.data.update(fname=[base])
else:
pyzebra.merge_datasets(det_data, file_data)
_init_datatable()
append_upload_button.disabled = False
upload_div = Div(text="or upload new .ccl/.dat files:", margin=(5, 5, 0, 5))
upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200)
# for on_change("value", ...) or on_change("filename", ...),
# see https://github.com/bokeh/bokeh/issues/11461
upload_button.on_change("filename", upload_button_callback)
def append_upload_button_callback(_attr, _old, _new):
for f_str, f_name in zip(append_upload_button.value, append_upload_button.filename):
with io.StringIO(base64.b64decode(f_str).decode()) as file:
_, ext = os.path.splitext(f_name)
file_data = pyzebra.parse_1D(file, ext)
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
pyzebra.merge_datasets(det_data, file_data)
_init_datatable()
append_upload_div = Div(text="append extra files:", margin=(5, 5, 0, 5))
append_upload_button = FileInput(accept=".ccl,.dat", multiple=True, width=200, disabled=True)
# for on_change("value", ...) or on_change("filename", ...),
# see https://github.com/bokeh/bokeh/issues/11461
append_upload_button.on_change("filename", append_upload_button_callback)
def monitor_spinner_callback(_attr, _old, new):
if det_data:
pyzebra.normalize_dataset(det_data, new)
_update_plot()
monitor_spinner = Spinner(title="Monitor:", mode="int", value=100_000, low=1, width=145)
monitor_spinner.on_change("value", monitor_spinner_callback)
def scan_motor_select_callback(_attr, _old, new):
if det_data:
for scan in det_data:
scan["scan_motor"] = new
_update_plot()
scan_motor_select = Select(title="Scan motor:", options=[], width=145)
scan_motor_select.on_change("value", scan_motor_select_callback)
def _update_table():
fit_ok = [(1 if "fit" in scan else 0) for scan in det_data]
scan_table_source.data.update(fit=fit_ok)
def _update_plot():
_update_single_scan_plot()
_update_overview()
def _update_single_scan_plot():
scan = _get_selected_scan()
scan_motor = scan["scan_motor"]
y = scan["counts"]
y_err = scan["counts_err"]
x = scan[scan_motor]
plot.axis[0].axis_label = scan_motor
plot_scatter_source.data.update(x=x, y=y, y_upper=y + y_err, y_lower=y - y_err)
fit = scan.get("fit")
if fit is not None:
x_fit = np.linspace(x[0], x[-1], 100)
plot_fit_source.data.update(x=x_fit, y=fit.eval(x=x_fit))
x_bkg = []
y_bkg = []
xs_peak = []
ys_peak = []
comps = fit.eval_components(x=x_fit)
for i, model in enumerate(fit_params):
if "linear" in model:
x_bkg = x_fit
y_bkg = comps[f"f{i}_"]
elif any(val in model for val in ("gaussian", "voigt", "pvoigt")):
xs_peak.append(x_fit)
ys_peak.append(comps[f"f{i}_"])
plot_bkg_source.data.update(x=x_bkg, y=y_bkg)
plot_peak_source.data.update(xs=xs_peak, ys=ys_peak)
fit_output_textinput.value = fit.fit_report()
else:
plot_fit_source.data.update(x=[], y=[])
plot_bkg_source.data.update(x=[], y=[])
plot_peak_source.data.update(xs=[], ys=[])
fit_output_textinput.value = ""
def _update_overview():
xs = []
ys = []
param = []
x = []
y = []
par = []
for s, p in enumerate(scan_table_source.data["param"]):
if p is not None:
scan = det_data[s]
scan_motor = scan["scan_motor"]
xs.append(scan[scan_motor])
x.extend(scan[scan_motor])
ys.append(scan["counts"])
y.extend([float(p)] * len(scan[scan_motor]))
param.append(float(p))
par.extend(scan["counts"])
if det_data:
scan_motor = det_data[0]["scan_motor"]
ov_plot.axis[0].axis_label = scan_motor
ov_param_plot.axis[0].axis_label = scan_motor
ov_plot_mline_source.data.update(xs=xs, ys=ys, param=param, color=color_palette(len(xs)))
if y:
mapper["transform"].low = np.min([np.min(y) for y in ys])
mapper["transform"].high = np.max([np.max(y) for y in ys])
ov_param_plot_scatter_source.data.update(x=x, y=y, param=par)
if y:
interp_f = interpolate.interp2d(x, y, par)
x1, x2 = min(x), max(x)
y1, y2 = min(y), max(y)
image = interp_f(
np.linspace(x1, x2, ov_param_plot.inner_width // 10),
np.linspace(y1, y2, ov_param_plot.inner_height // 10),
assume_sorted=True,
)
ov_param_plot_image_source.data.update(
image=[image], x=[x1], y=[y1], dw=[x2 - x1], dh=[y2 - y1]
)
else:
ov_param_plot_image_source.data.update(image=[], x=[], y=[], dw=[], dh=[])
def _update_param_plot():
x = []
y = []
y_lower = []
y_upper = []
fit_param = fit_param_select.value
for s, p in zip(det_data, scan_table_source.data["param"]):
if "fit" in s and fit_param:
x.append(p)
param_fit_val = s["fit"].params[fit_param].value
param_fit_std = s["fit"].params[fit_param].stderr
y.append(param_fit_val)
y_lower.append(param_fit_val - param_fit_std)
y_upper.append(param_fit_val + param_fit_std)
param_plot_scatter_source.data.update(x=x, y=y, y_lower=y_lower, y_upper=y_upper)
# Main plot
plot = Plot(
x_range=DataRange1d(),
y_range=DataRange1d(only_visible=True),
plot_height=450,
plot_width=700,
)
plot.add_layout(LinearAxis(axis_label="Counts"), place="left")
plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")
plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
plot_scatter_source = ColumnDataSource(dict(x=[0], y=[0], y_upper=[0], y_lower=[0]))
plot_scatter = plot.add_glyph(
plot_scatter_source, Scatter(x="x", y="y", line_color="steelblue")
)
plot.add_layout(Whisker(source=plot_scatter_source, base="x", upper="y_upper", lower="y_lower"))
plot_fit_source = ColumnDataSource(dict(x=[0], y=[0]))
plot_fit = plot.add_glyph(plot_fit_source, Line(x="x", y="y"))
plot_bkg_source = ColumnDataSource(dict(x=[0], y=[0]))
plot_bkg = plot.add_glyph(
plot_bkg_source, Line(x="x", y="y", line_color="green", line_dash="dashed")
)
plot_peak_source = ColumnDataSource(dict(xs=[[0]], ys=[[0]]))
plot_peak = plot.add_glyph(
plot_peak_source, MultiLine(xs="xs", ys="ys", line_color="red", line_dash="dashed")
)
fit_from_span = Span(location=None, dimension="height", line_dash="dashed")
plot.add_layout(fit_from_span)
fit_to_span = Span(location=None, dimension="height", line_dash="dashed")
plot.add_layout(fit_to_span)
plot.add_layout(
Legend(
items=[
("data", [plot_scatter]),
("best fit", [plot_fit]),
("peak", [plot_peak]),
("linear", [plot_bkg]),
],
location="top_left",
click_policy="hide",
)
)
plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
plot.toolbar.logo = None
# Overview multilines plot
ov_plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_height=450, plot_width=700)
ov_plot.add_layout(LinearAxis(axis_label="Counts"), place="left")
ov_plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")
ov_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
ov_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
ov_plot_mline_source = ColumnDataSource(dict(xs=[], ys=[], param=[], color=[]))
ov_plot.add_glyph(ov_plot_mline_source, MultiLine(xs="xs", ys="ys", line_color="color"))
hover_tool = HoverTool(tooltips=[("param", "@param")])
ov_plot.add_tools(PanTool(), WheelZoomTool(), hover_tool, ResetTool())
ov_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
ov_plot.toolbar.logo = None
# Overview perams plot
ov_param_plot = Plot(
x_range=DataRange1d(), y_range=DataRange1d(), plot_height=450, plot_width=700
)
ov_param_plot.add_layout(LinearAxis(axis_label="Param"), place="left")
ov_param_plot.add_layout(LinearAxis(axis_label="Scan motor"), place="below")
ov_param_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
ov_param_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
ov_param_plot_image_source = ColumnDataSource(dict(image=[], x=[], y=[], dw=[], dh=[]))
ov_param_plot.add_glyph(
ov_param_plot_image_source, Image(image="image", x="x", y="y", dw="dw", dh="dh")
)
ov_param_plot_scatter_source = ColumnDataSource(dict(x=[], y=[], param=[]))
mapper = linear_cmap(field_name="param", palette=Turbo256, low=0, high=50)
ov_param_plot.add_glyph(
ov_param_plot_scatter_source,
Scatter(x="x", y="y", line_color=mapper, fill_color=mapper, size=10),
)
ov_param_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
ov_param_plot.toolbar.logo = None
# Parameter plot
param_plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_height=400, plot_width=700)
param_plot.add_layout(LinearAxis(axis_label="Fit parameter"), place="left")
param_plot.add_layout(LinearAxis(axis_label="Parameter"), place="below")
param_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
param_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
param_plot_scatter_source = ColumnDataSource(dict(x=[], y=[], y_upper=[], y_lower=[]))
param_plot.add_glyph(param_plot_scatter_source, Scatter(x="x", y="y"))
param_plot.add_layout(
Whisker(source=param_plot_scatter_source, base="x", upper="y_upper", lower="y_lower")
)
param_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
param_plot.toolbar.logo = None
def fit_param_select_callback(_attr, _old, _new):
_update_param_plot()
fit_param_select = Select(title="Fit parameter", options=[], width=145)
fit_param_select.on_change("value", fit_param_select_callback)
# Plot tabs
plots = Tabs(
tabs=[
Panel(child=plot, title="single scan"),
Panel(child=ov_plot, title="overview"),
Panel(child=ov_param_plot, title="overview map"),
Panel(child=column(param_plot, row(fit_param_select)), title="parameter plot"),
]
)
# Scan select
def scan_table_select_callback(_attr, old, new):
if not new:
# skip empty selections
return
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
if len(new) > 1:
# drop selection to the previous one
scan_table_source.selected.indices = old
return
if len(old) > 1:
# skip unnecessary update caused by selection drop
return
_update_plot()
def scan_table_source_callback(_attr, _old, new):
# unfortunately, we don't know if the change comes from data update or user input
# also `old` and `new` are the same for non-scalars
for scan, export in zip(det_data, new["export"]):
scan["export"] = export
_update_preview()
scan_table_source = ColumnDataSource(dict(file=[], scan=[], param=[], fit=[], export=[]))
scan_table_source.on_change("data", scan_table_source_callback)
scan_table_source.selected.on_change("indices", scan_table_select_callback)
scan_table = DataTable(
source=scan_table_source,
columns=[
TableColumn(field="file", title="file", editor=CellEditor(), width=150),
TableColumn(field="scan", title="scan", editor=CellEditor(), width=50),
TableColumn(field="param", title="param", editor=NumberEditor(), width=50),
TableColumn(field="fit", title="Fit", editor=CellEditor(), width=50),
TableColumn(field="export", title="Export", editor=CheckboxEditor(), width=50),
],
width=410, # +60 because of the index column
editable=True,
autosize_mode="none",
)
def _get_selected_scan():
return det_data[scan_table_source.selected.indices[0]]
def param_select_callback(_attr, _old, new):
if new == "user defined":
param = [None] * len(det_data)
else:
param = [scan[new] for scan in det_data]
scan_table_source.data["param"] = param
_update_param_plot()
param_select = Select(
title="Parameter:",
options=["user defined", "temp", "mf", "h", "k", "l"],
value="user defined",
width=145,
)
param_select.on_change("value", param_select_callback)
def fit_from_spinner_callback(_attr, _old, new):
fit_from_span.location = new
fit_from_spinner = Spinner(title="Fit from:", width=145)
fit_from_spinner.on_change("value", fit_from_spinner_callback)
def fit_to_spinner_callback(_attr, _old, new):
fit_to_span.location = new
fit_to_spinner = Spinner(title="to:", width=145)
fit_to_spinner.on_change("value", fit_to_spinner_callback)
def fitparams_add_dropdown_callback(click):
# bokeh requires (str, str) for MultiSelect options
new_tag = f"{click.item}-{fitparams_select.tags[0]}"
fitparams_select.options.append((new_tag, click.item))
fit_params[new_tag] = fitparams_factory(click.item)
fitparams_select.tags[0] += 1
fitparams_add_dropdown = Dropdown(
label="Add fit function",
menu=[
("Linear", "linear"),
("Gaussian", "gaussian"),
("Voigt", "voigt"),
("Pseudo Voigt", "pvoigt"),
# ("Pseudo Voigt1", "pseudovoigt1"),
],
width=145,
)
fitparams_add_dropdown.on_click(fitparams_add_dropdown_callback)
def fitparams_select_callback(_attr, old, new):
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
if len(new) > 1:
# drop selection to the previous one
fitparams_select.value = old
return
if len(old) > 1:
# skip unnecessary update caused by selection drop
return
if new:
fitparams_table_source.data.update(fit_params[new[0]])
else:
fitparams_table_source.data.update(dict(param=[], value=[], vary=[], min=[], max=[]))
fitparams_select = MultiSelect(options=[], height=120, width=145)
fitparams_select.tags = [0]
fitparams_select.on_change("value", fitparams_select_callback)
def fitparams_remove_button_callback():
if fitparams_select.value:
sel_tag = fitparams_select.value[0]
del fit_params[sel_tag]
for elem in fitparams_select.options:
if elem[0] == sel_tag:
fitparams_select.options.remove(elem)
break
fitparams_select.value = []
fitparams_remove_button = Button(label="Remove fit function", width=145)
fitparams_remove_button.on_click(fitparams_remove_button_callback)
def fitparams_factory(function):
if function == "linear":
params = ["slope", "intercept"]
elif function == "gaussian":
params = ["amplitude", "center", "sigma"]
elif function == "voigt":
params = ["amplitude", "center", "sigma", "gamma"]
elif function == "pvoigt":
params = ["amplitude", "center", "sigma", "fraction"]
elif function == "pseudovoigt1":
params = ["amplitude", "center", "g_sigma", "l_sigma", "fraction"]
else:
raise ValueError("Unknown fit function")
n = len(params)
fitparams = dict(
param=params, value=[None] * n, vary=[True] * n, min=[None] * n, max=[None] * n,
)
if function == "linear":
fitparams["value"] = [0, 1]
fitparams["vary"] = [False, True]
fitparams["min"] = [None, 0]
elif function == "gaussian":
fitparams["min"] = [0, None, None]
return fitparams
fitparams_table_source = ColumnDataSource(dict(param=[], value=[], vary=[], min=[], max=[]))
fitparams_table = DataTable(
source=fitparams_table_source,
columns=[
TableColumn(field="param", title="Parameter", editor=CellEditor()),
TableColumn(field="value", title="Value", editor=NumberEditor()),
TableColumn(field="vary", title="Vary", editor=CheckboxEditor()),
TableColumn(field="min", title="Min", editor=NumberEditor()),
TableColumn(field="max", title="Max", editor=NumberEditor()),
],
height=200,
width=350,
index_position=None,
editable=True,
auto_edit=True,
)
# start with `background` and `gauss` fit functions added
fitparams_add_dropdown_callback(types.SimpleNamespace(item="linear"))
fitparams_add_dropdown_callback(types.SimpleNamespace(item="gaussian"))
fitparams_select.value = ["gaussian-1"] # add selection to gauss
fit_output_textinput = TextAreaInput(title="Fit results:", width=750, height=200)
def proc_all_button_callback():
for scan in det_data:
if scan["export"]:
pyzebra.fit_scan(
scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value
)
pyzebra.get_area(
scan,
area_method=AREA_METHODS[area_method_radiobutton.active],
lorentz=lorentz_checkbox.active,
)
_update_plot()
_update_table()
for scan in det_data:
if "fit" in scan:
options = list(scan["fit"].params.keys())
fit_param_select.options = options
fit_param_select.value = options[0]
break
_update_param_plot()
proc_all_button = Button(label="Process All", button_type="primary", width=145)
proc_all_button.on_click(proc_all_button_callback)
def proc_button_callback():
scan = _get_selected_scan()
pyzebra.fit_scan(
scan, fit_params, fit_from=fit_from_spinner.value, fit_to=fit_to_spinner.value
)
pyzebra.get_area(
scan,
area_method=AREA_METHODS[area_method_radiobutton.active],
lorentz=lorentz_checkbox.active,
)
_update_plot()
_update_table()
for scan in det_data:
if "fit" in scan:
options = list(scan["fit"].params.keys())
fit_param_select.options = options
fit_param_select.value = options[0]
break
_update_param_plot()
proc_button = Button(label="Process Current", width=145)
proc_button.on_click(proc_button_callback)
area_method_div = Div(text="Intensity:", margin=(5, 5, 0, 5))
area_method_radiobutton = RadioGroup(labels=["Function", "Area"], active=0, width=145)
lorentz_checkbox = CheckboxGroup(labels=["Lorentz Correction"], width=145, margin=(13, 5, 5, 5))
export_preview_textinput = TextAreaInput(title="Export file preview:", width=450, height=400)
def _update_preview():
with tempfile.TemporaryDirectory() as temp_dir:
temp_file = temp_dir + "/temp"
export_data = []
param_data = []
for scan, param in zip(det_data, scan_table_source.data["param"]):
if scan["export"]:
export_data.append(scan)
param_data.append(param)
pyzebra.export_param_study(export_data, param_data, temp_file)
exported_content = ""
file_content = []
fname = temp_file
if os.path.isfile(fname):
with open(fname) as f:
content = f.read()
exported_content += content
else:
content = ""
file_content.append(content)
js_data.data.update(content=file_content)
export_preview_textinput.value = exported_content
save_button = Button(label="Download File", button_type="success", width=220)
save_button.js_on_click(CustomJS(args={"js_data": js_data}, code=javaScript))
fitpeak_controls = row(
column(fitparams_add_dropdown, fitparams_select, fitparams_remove_button),
fitparams_table,
Spacer(width=20),
column(fit_from_spinner, lorentz_checkbox, area_method_div, area_method_radiobutton),
column(fit_to_spinner, proc_button, proc_all_button),
)
scan_layout = column(scan_table, row(monitor_spinner, scan_motor_select, param_select))
import_layout = column(
file_select,
row(file_open_button, file_append_button),
upload_div,
upload_button,
append_upload_div,
append_upload_button,
)
export_layout = column(export_preview_textinput, row(save_button))
tab_layout = column(
row(import_layout, scan_layout, plots, Spacer(width=30), export_layout),
row(fitpeak_controls, fit_output_textinput),
)
return Panel(child=tab_layout, title="param study")