518 lines
16 KiB
Python
518 lines
16 KiB
Python
import base64
|
|
import io
|
|
import os
|
|
|
|
import numpy as np
|
|
from bokeh.io import curdoc
|
|
from bokeh.layouts import column, gridplot, row
|
|
from bokeh.models import (
|
|
Button,
|
|
CellEditor,
|
|
CheckboxGroup,
|
|
ColumnDataSource,
|
|
DataTable,
|
|
Div,
|
|
FileInput,
|
|
LinearColorMapper,
|
|
MultiSelect,
|
|
NumberEditor,
|
|
NumberFormatter,
|
|
Panel,
|
|
Range1d,
|
|
Select,
|
|
Spinner,
|
|
TableColumn,
|
|
Tabs,
|
|
)
|
|
from bokeh.plotting import figure
|
|
|
|
import pyzebra
|
|
|
|
IMAGE_W = 256
|
|
IMAGE_H = 128
|
|
IMAGE_PLOT_W = int(IMAGE_W * 2) + 52
|
|
IMAGE_PLOT_H = int(IMAGE_H * 2) + 27
|
|
|
|
|
|
def create():
|
|
doc = curdoc()
|
|
dataset = []
|
|
cami_meta = {}
|
|
|
|
num_formatter = NumberFormatter(format="0.00", nan_format="")
|
|
|
|
def file_select_update():
|
|
if data_source.value == "proposal number":
|
|
proposal_path = proposal_textinput.name
|
|
if proposal_path:
|
|
file_list = []
|
|
for file in os.listdir(proposal_path):
|
|
if file.endswith(".hdf"):
|
|
file_list.append((os.path.join(proposal_path, file), file))
|
|
file_select.options = file_list
|
|
else:
|
|
file_select.options = []
|
|
|
|
else: # "cami file"
|
|
if not cami_meta:
|
|
file_select.options = []
|
|
return
|
|
|
|
file_list = cami_meta["filelist"]
|
|
file_select.options = [(entry, os.path.basename(entry)) for entry in file_list]
|
|
|
|
def data_source_callback(_attr, _old, _new):
|
|
file_select_update()
|
|
|
|
data_source = Select(
|
|
title="Data Source:",
|
|
value="proposal number",
|
|
options=["proposal number", "cami file"],
|
|
width=210,
|
|
)
|
|
data_source.on_change("value", data_source_callback)
|
|
|
|
doc.add_periodic_callback(file_select_update, 5000)
|
|
|
|
def proposal_textinput_callback(_attr, _old, _new):
|
|
file_select_update()
|
|
|
|
proposal_textinput = doc.proposal_textinput
|
|
proposal_textinput.on_change("name", proposal_textinput_callback)
|
|
|
|
def upload_button_callback(_attr, _old, new):
|
|
nonlocal cami_meta
|
|
with io.StringIO(base64.b64decode(new).decode()) as file:
|
|
cami_meta = pyzebra.parse_h5meta(file)
|
|
data_source.value = "cami file"
|
|
file_select_update()
|
|
|
|
upload_div = Div(text="or upload .cami file:", margin=(5, 5, 0, 5))
|
|
upload_button = FileInput(accept=".cami", width=200)
|
|
upload_button.on_change("value", upload_button_callback)
|
|
|
|
file_select = MultiSelect(title="Available .hdf files:", width=210, height=320)
|
|
|
|
def _init_datatable():
|
|
file_list = []
|
|
for scan in dataset:
|
|
file_list.append(os.path.basename(scan["original_filename"]))
|
|
|
|
scan_table_source.data.update(
|
|
file=file_list,
|
|
param=[None] * len(dataset),
|
|
frame=[None] * len(dataset),
|
|
x_pos=[None] * len(dataset),
|
|
y_pos=[None] * len(dataset),
|
|
)
|
|
scan_table_source.selected.indices = []
|
|
scan_table_source.selected.indices = [0]
|
|
|
|
param_select.value = "user defined"
|
|
|
|
def _update_table():
|
|
frame = []
|
|
x_pos = []
|
|
y_pos = []
|
|
for scan in dataset:
|
|
if "fit" in scan:
|
|
framei = scan["fit"]["frame"]
|
|
x_posi = scan["fit"]["x_pos"]
|
|
y_posi = scan["fit"]["y_pos"]
|
|
else:
|
|
framei = x_posi = y_posi = None
|
|
|
|
frame.append(framei)
|
|
x_pos.append(x_posi)
|
|
y_pos.append(y_posi)
|
|
|
|
scan_table_source.data.update(frame=frame, x_pos=x_pos, y_pos=y_pos)
|
|
|
|
def _file_open():
|
|
new_data = []
|
|
for f_name in file_select.value:
|
|
try:
|
|
new_data.append(pyzebra.read_detector_data(f_name))
|
|
except KeyError:
|
|
print("Could not read data from the file.")
|
|
return
|
|
|
|
dataset.extend(new_data)
|
|
|
|
_init_datatable()
|
|
|
|
def file_open_button_callback():
|
|
nonlocal dataset
|
|
dataset = []
|
|
_file_open()
|
|
|
|
file_open_button = Button(label="Open New", width=100)
|
|
file_open_button.on_click(file_open_button_callback)
|
|
|
|
def file_append_button_callback():
|
|
_file_open()
|
|
|
|
file_append_button = Button(label="Append", width=100)
|
|
file_append_button.on_click(file_append_button_callback)
|
|
|
|
# Scan select
|
|
def scan_table_select_callback(_attr, old, new):
|
|
if not new:
|
|
# skip empty selections
|
|
return
|
|
|
|
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
|
|
if len(new) > 1:
|
|
# drop selection to the previous one
|
|
scan_table_source.selected.indices = old
|
|
return
|
|
|
|
if len(old) > 1:
|
|
# skip unnecessary update caused by selection drop
|
|
return
|
|
|
|
scan = dataset[new[0]]
|
|
|
|
zebra_mode = scan["zebra_mode"]
|
|
if zebra_mode == "nb":
|
|
metadata_table_source.data.update(geom=["normal beam"])
|
|
else: # zebra_mode == "bi"
|
|
metadata_table_source.data.update(geom=["bisecting"])
|
|
|
|
if "mf" in scan:
|
|
metadata_table_source.data.update(mf=[scan["mf"][0]])
|
|
else:
|
|
metadata_table_source.data.update(mf=[None])
|
|
|
|
if "temp" in scan:
|
|
metadata_table_source.data.update(temp=[scan["temp"][0]])
|
|
else:
|
|
metadata_table_source.data.update(temp=[None])
|
|
|
|
_update_proj_plots()
|
|
|
|
def scan_table_source_callback(_attr, _old, _new):
|
|
pass
|
|
|
|
scan_table_source = ColumnDataSource(dict(file=[], param=[], frame=[], x_pos=[], y_pos=[]))
|
|
scan_table_source.selected.on_change("indices", scan_table_select_callback)
|
|
scan_table_source.on_change("data", scan_table_source_callback)
|
|
|
|
scan_table = DataTable(
|
|
source=scan_table_source,
|
|
columns=[
|
|
TableColumn(field="file", title="file", editor=CellEditor(), width=150),
|
|
TableColumn(
|
|
field="param",
|
|
title="param",
|
|
formatter=num_formatter,
|
|
editor=NumberEditor(),
|
|
width=50,
|
|
),
|
|
TableColumn(
|
|
field="frame", title="Frame", formatter=num_formatter, editor=CellEditor(), width=70
|
|
),
|
|
TableColumn(
|
|
field="x_pos", title="X", formatter=num_formatter, editor=CellEditor(), width=70
|
|
),
|
|
TableColumn(
|
|
field="y_pos", title="Y", formatter=num_formatter, editor=CellEditor(), width=70
|
|
),
|
|
],
|
|
width=470, # +60 because of the index column
|
|
height=420,
|
|
editable=True,
|
|
autosize_mode="none",
|
|
)
|
|
|
|
def _get_selected_scan():
|
|
return dataset[scan_table_source.selected.indices[0]]
|
|
|
|
def param_select_callback(_attr, _old, new):
|
|
if new == "user defined":
|
|
param = [None] * len(dataset)
|
|
else:
|
|
# TODO: which value to take?
|
|
param = [scan[new][0] for scan in dataset]
|
|
|
|
scan_table_source.data["param"] = param
|
|
_update_param_plot()
|
|
|
|
param_select = Select(
|
|
title="Parameter:",
|
|
options=["user defined", "temp", "mf", "h", "k", "l"],
|
|
value="user defined",
|
|
width=145,
|
|
)
|
|
param_select.on_change("value", param_select_callback)
|
|
|
|
def _update_proj_plots():
|
|
scan = _get_selected_scan()
|
|
counts = scan["counts"]
|
|
n_im, n_y, n_x = counts.shape
|
|
im_proj_x = np.mean(counts, axis=1)
|
|
im_proj_y = np.mean(counts, axis=2)
|
|
|
|
# normalize for simpler colormapping
|
|
im_proj_max_val = max(np.max(im_proj_x), np.max(im_proj_y))
|
|
im_proj_x = 1000 * im_proj_x / im_proj_max_val
|
|
im_proj_y = 1000 * im_proj_y / im_proj_max_val
|
|
|
|
proj_x_image_source.data.update(image=[im_proj_x], dw=[n_x], dh=[n_im])
|
|
proj_y_image_source.data.update(image=[im_proj_y], dw=[n_y], dh=[n_im])
|
|
|
|
if proj_auto_checkbox.active:
|
|
im_min = min(np.min(im_proj_x), np.min(im_proj_y))
|
|
im_max = max(np.max(im_proj_x), np.max(im_proj_y))
|
|
|
|
proj_display_min_spinner.value = im_min
|
|
proj_display_max_spinner.value = im_max
|
|
|
|
frame_range.start = 0
|
|
frame_range.end = n_im
|
|
frame_range.reset_start = 0
|
|
frame_range.reset_end = n_im
|
|
frame_range.bounds = (0, n_im)
|
|
|
|
scan_motor = scan["scan_motor"]
|
|
proj_y_plot.axis[1].axis_label = f"Scanning motor, {scan_motor}"
|
|
|
|
var = scan[scan_motor]
|
|
var_start = var[0]
|
|
var_end = var[-1] + (var[-1] - var[0]) / (n_im - 1)
|
|
|
|
scanning_motor_range.start = var_start
|
|
scanning_motor_range.end = var_end
|
|
scanning_motor_range.reset_start = var_start
|
|
scanning_motor_range.reset_end = var_end
|
|
# handle both, ascending and descending sequences
|
|
scanning_motor_range.bounds = (min(var_start, var_end), max(var_start, var_end))
|
|
|
|
# shared frame ranges
|
|
frame_range = Range1d(0, 1, bounds=(0, 1))
|
|
scanning_motor_range = Range1d(0, 1, bounds=(0, 1))
|
|
color_mapper_proj = LinearColorMapper()
|
|
|
|
det_x_range = Range1d(0, IMAGE_W, bounds=(0, IMAGE_W))
|
|
proj_x_plot = figure(
|
|
title="Projections on X-axis",
|
|
x_axis_label="Coordinate X, pix",
|
|
y_axis_label="Frame",
|
|
x_range=det_x_range,
|
|
y_range=frame_range,
|
|
extra_y_ranges={"scanning_motor": scanning_motor_range},
|
|
plot_height=400,
|
|
plot_width=IMAGE_PLOT_W - 3,
|
|
tools="pan,box_zoom,wheel_zoom,reset",
|
|
active_scroll="wheel_zoom",
|
|
)
|
|
|
|
proj_x_plot.yaxis.major_label_orientation = "vertical"
|
|
proj_x_plot.toolbar.tools[2].maintain_focus = False
|
|
|
|
proj_x_image_source = ColumnDataSource(
|
|
dict(image=[np.zeros((1, 1), dtype="float32")], x=[0], y=[0], dw=[IMAGE_W], dh=[1])
|
|
)
|
|
|
|
proj_x_plot.image(source=proj_x_image_source, color_mapper=color_mapper_proj)
|
|
|
|
det_y_range = Range1d(0, IMAGE_H, bounds=(0, IMAGE_H))
|
|
proj_y_plot = figure(
|
|
title="Projections on Y-axis",
|
|
x_axis_label="Coordinate Y, pix",
|
|
y_axis_label="Scanning motor",
|
|
y_axis_location="right",
|
|
x_range=det_y_range,
|
|
y_range=frame_range,
|
|
extra_y_ranges={"scanning_motor": scanning_motor_range},
|
|
plot_height=400,
|
|
plot_width=IMAGE_PLOT_H + 22,
|
|
tools="pan,box_zoom,wheel_zoom,reset",
|
|
active_scroll="wheel_zoom",
|
|
)
|
|
|
|
proj_y_plot.yaxis.y_range_name = "scanning_motor"
|
|
proj_y_plot.yaxis.major_label_orientation = "vertical"
|
|
proj_y_plot.toolbar.tools[2].maintain_focus = False
|
|
|
|
proj_y_image_source = ColumnDataSource(
|
|
dict(image=[np.zeros((1, 1), dtype="float32")], x=[0], y=[0], dw=[IMAGE_H], dh=[1])
|
|
)
|
|
|
|
proj_y_plot.image(source=proj_y_image_source, color_mapper=color_mapper_proj)
|
|
|
|
def colormap_select_callback(_attr, _old, new):
|
|
color_mapper_proj.palette = new
|
|
|
|
colormap_select = Select(
|
|
title="Colormap:",
|
|
options=[("Greys256", "greys"), ("Plasma256", "plasma"), ("Cividis256", "cividis")],
|
|
width=210,
|
|
)
|
|
colormap_select.on_change("value", colormap_select_callback)
|
|
colormap_select.value = "Plasma256"
|
|
|
|
def proj_auto_checkbox_callback(state):
|
|
if state:
|
|
proj_display_min_spinner.disabled = True
|
|
proj_display_max_spinner.disabled = True
|
|
else:
|
|
proj_display_min_spinner.disabled = False
|
|
proj_display_max_spinner.disabled = False
|
|
|
|
_update_proj_plots()
|
|
|
|
proj_auto_checkbox = CheckboxGroup(
|
|
labels=["Projections Intensity Range"], active=[0], width=145, margin=[10, 5, 0, 5]
|
|
)
|
|
proj_auto_checkbox.on_click(proj_auto_checkbox_callback)
|
|
|
|
def proj_display_max_spinner_callback(_attr, _old_value, new_value):
|
|
color_mapper_proj.high = new_value
|
|
|
|
proj_display_max_spinner = Spinner(
|
|
value=1, disabled=bool(proj_auto_checkbox.active), mode="int", width=100, height=31
|
|
)
|
|
proj_display_max_spinner.on_change("value", proj_display_max_spinner_callback)
|
|
|
|
def proj_display_min_spinner_callback(_attr, _old_value, new_value):
|
|
color_mapper_proj.low = new_value
|
|
|
|
proj_display_min_spinner = Spinner(
|
|
value=0, disabled=bool(proj_auto_checkbox.active), mode="int", width=100, height=31
|
|
)
|
|
proj_display_min_spinner.on_change("value", proj_display_min_spinner_callback)
|
|
|
|
metadata_table_source = ColumnDataSource(dict(geom=[""], temp=[None], mf=[None]))
|
|
metadata_table = DataTable(
|
|
source=metadata_table_source,
|
|
columns=[
|
|
TableColumn(field="geom", title="Geometry", width=100),
|
|
TableColumn(field="temp", title="Temperature", formatter=num_formatter, width=100),
|
|
TableColumn(field="mf", title="Magnetic Field", formatter=num_formatter, width=100),
|
|
],
|
|
width=300,
|
|
height=50,
|
|
autosize_mode="none",
|
|
index_position=None,
|
|
)
|
|
|
|
def _update_param_plot():
|
|
x = []
|
|
y = []
|
|
fit_param = fit_param_select.value
|
|
for s, p in zip(dataset, scan_table_source.data["param"]):
|
|
if "fit" in s and fit_param:
|
|
x.append(p)
|
|
y.append(s["fit"][fit_param])
|
|
param_scatter_source.data.update(x=x, y=y)
|
|
|
|
# Parameter plot
|
|
param_plot = figure(
|
|
x_axis_label="Parameter",
|
|
y_axis_label="Fit parameter",
|
|
plot_height=400,
|
|
plot_width=700,
|
|
tools="pan,wheel_zoom,reset",
|
|
)
|
|
|
|
param_scatter_source = ColumnDataSource(dict(x=[], y=[]))
|
|
param_plot.circle(source=param_scatter_source)
|
|
|
|
param_plot.toolbar.logo = None
|
|
|
|
def fit_param_select_callback(_attr, _old, _new):
|
|
_update_param_plot()
|
|
|
|
fit_param_select = Select(title="Fit parameter", options=[], width=145)
|
|
fit_param_select.on_change("value", fit_param_select_callback)
|
|
|
|
def proc_all_button_callback():
|
|
for scan in dataset:
|
|
pyzebra.fit_event(
|
|
scan,
|
|
int(np.floor(frame_range.start)),
|
|
int(np.ceil(frame_range.end)),
|
|
int(np.floor(det_y_range.start)),
|
|
int(np.ceil(det_y_range.end)),
|
|
int(np.floor(det_x_range.start)),
|
|
int(np.ceil(det_x_range.end)),
|
|
)
|
|
|
|
_update_table()
|
|
|
|
for scan in dataset:
|
|
if "fit" in scan:
|
|
options = list(scan["fit"].keys())
|
|
fit_param_select.options = options
|
|
fit_param_select.value = options[0]
|
|
break
|
|
|
|
_update_param_plot()
|
|
|
|
proc_all_button = Button(label="Process All", button_type="primary", width=145)
|
|
proc_all_button.on_click(proc_all_button_callback)
|
|
|
|
def proc_button_callback():
|
|
scan = _get_selected_scan()
|
|
pyzebra.fit_event(
|
|
scan,
|
|
int(np.floor(frame_range.start)),
|
|
int(np.ceil(frame_range.end)),
|
|
int(np.floor(det_y_range.start)),
|
|
int(np.ceil(det_y_range.end)),
|
|
int(np.floor(det_x_range.start)),
|
|
int(np.ceil(det_x_range.end)),
|
|
)
|
|
|
|
_update_table()
|
|
|
|
for scan in dataset:
|
|
if "fit" in scan:
|
|
options = list(scan["fit"].keys())
|
|
fit_param_select.options = options
|
|
fit_param_select.value = options[0]
|
|
break
|
|
|
|
_update_param_plot()
|
|
|
|
proc_button = Button(label="Process Current", width=145)
|
|
proc_button.on_click(proc_button_callback)
|
|
|
|
layout_controls = row(
|
|
colormap_select,
|
|
column(proj_auto_checkbox, row(proj_display_min_spinner, proj_display_max_spinner)),
|
|
proc_button,
|
|
proc_all_button,
|
|
)
|
|
|
|
layout_proj = column(
|
|
gridplot(
|
|
[[proj_x_plot, proj_y_plot]], toolbar_options={"logo": None}, toolbar_location="right"
|
|
),
|
|
layout_controls,
|
|
)
|
|
|
|
# Plot tabs
|
|
plots = Tabs(
|
|
tabs=[
|
|
Panel(child=layout_proj, title="single scan"),
|
|
Panel(child=column(param_plot, row(fit_param_select)), title="parameter plot"),
|
|
]
|
|
)
|
|
|
|
# Final layout
|
|
import_layout = column(
|
|
data_source,
|
|
upload_div,
|
|
upload_button,
|
|
file_select,
|
|
row(file_open_button, file_append_button),
|
|
)
|
|
|
|
scan_layout = column(scan_table, row(param_select, metadata_table))
|
|
|
|
tab_layout = column(row(import_layout, scan_layout, plots))
|
|
|
|
return Panel(child=tab_layout, title="hdf param study")
|