Compare commits

..

No commits in common. "main" and "0.7.3" have entirely different histories.
main ... 0.7.3

29 changed files with 280 additions and 354 deletions

View File

@ -1,53 +0,0 @@
name: pyzebra CI/CD pipeline
on:
push:
branches:
- main
tags:
- '*'
env:
CONDA: /opt/miniforge3
jobs:
prepare:
runs-on: pyzebra
steps:
- run: $CONDA/bin/conda config --add channels conda-forge
- run: $CONDA/bin/conda config --set solver libmamba
test-env:
runs-on: pyzebra
needs: prepare
if: github.ref == 'refs/heads/main'
env:
BUILD_DIR: ${{ runner.temp }}/conda_build
steps:
- name: Checkout repository
uses: actions/checkout@v4
- run: $CONDA/bin/conda build --no-anaconda-upload --output-folder $BUILD_DIR ./conda-recipe
- run: $CONDA/bin/conda remove --name test --all --keep-env -y
- run: $CONDA/bin/conda install --name test --channel $BUILD_DIR python=3.8 pyzebra -y
- run: sudo systemctl restart pyzebra-test.service
prod-env:
runs-on: pyzebra
needs: prepare
if: startsWith(github.ref, 'refs/tags/')
env:
BUILD_DIR: ${{ runner.temp }}/conda_build
steps:
- name: Checkout repository
uses: actions/checkout@v4
- run: $CONDA/bin/conda build --token ${{ secrets.ANACONDA_TOKEN }} --output-folder $BUILD_DIR ./conda-recipe
- run: $CONDA/bin/conda remove --name prod --all --keep-env -y
- run: $CONDA/bin/conda install --name prod --channel $BUILD_DIR python=3.8 pyzebra -y
- run: sudo systemctl restart pyzebra-prod.service
cleanup:
runs-on: pyzebra
needs: [test-env, prod-env]
if: always()
steps:
- run: $CONDA/bin/conda build purge-all

25
.github/workflows/deployment.yaml vendored Normal file
View File

@ -0,0 +1,25 @@
name: Deployment
on:
push:
tags:
- '*'
jobs:
publish-conda-package:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Prepare
run: |
$CONDA/bin/conda install --quiet --yes conda-build anaconda-client
$CONDA/bin/conda config --append channels conda-forge
$CONDA/bin/conda config --set anaconda_upload yes
- name: Build and upload
env:
ANACONDA_TOKEN: ${{ secrets.ANACONDA_TOKEN }}
run: |
$CONDA/bin/conda build --token $ANACONDA_TOKEN conda-recipe

View File

@ -15,10 +15,10 @@ build:
requirements:
build:
- python >=3.8
- python >=3.7
- setuptools
run:
- python >=3.8
- python >=3.7
- numpy
- scipy
- h5py
@ -28,7 +28,7 @@ requirements:
about:
home: https://gitlab.psi.ch/zebra/pyzebra
home: https://github.com/paulscherrerinstitute/pyzebra
summary: {{ data['description'] }}
license: GNU GPLv3
license_file: LICENSE

View File

@ -7,19 +7,18 @@ import subprocess
def main():
default_branch = "main"
branch = subprocess.check_output("git rev-parse --abbrev-ref HEAD", shell=True).decode().strip()
if branch != default_branch:
print(f"Aborting, not on '{default_branch}' branch.")
if branch != "master":
print("Aborting, not on 'master' branch.")
return
version_filepath = os.path.join(os.path.basename(os.path.dirname(__file__)), "__init__.py")
filepath = "pyzebra/__init__.py"
parser = argparse.ArgumentParser()
parser.add_argument("level", type=str, choices=["patch", "minor", "major"])
args = parser.parse_args()
with open(version_filepath) as f:
with open(filepath) as f:
file_content = f.read()
version = re.search(r'__version__ = "(.*?)"', file_content).group(1)
@ -37,12 +36,11 @@ def main():
new_version = f"{major}.{minor}.{patch}"
with open(version_filepath, "w") as f:
with open(filepath, "w") as f:
f.write(re.sub(r'__version__ = "(.*?)"', f'__version__ = "{new_version}"', file_content))
os.system(f"git commit {version_filepath} -m 'Updating for version {new_version}'")
os.system(f"git commit {filepath} -m 'Updating for version {new_version}'")
os.system(f"git tag -a {new_version} -m 'Release {new_version}'")
os.system("git push --follow-tags")
if __name__ == "__main__":

View File

@ -6,4 +6,4 @@ from pyzebra.sxtal_refgen import *
from pyzebra.utils import *
from pyzebra.xtal import *
__version__ = "0.7.11"
__version__ = "0.7.3"

View File

@ -1,9 +1,6 @@
import logging
import subprocess
import xml.etree.ElementTree as ET
logger = logging.getLogger(__name__)
DATA_FACTORY_IMPLEMENTATION = ["trics", "morph", "d10"]
REFLECTION_PRINTER_FORMATS = [
@ -19,11 +16,11 @@ REFLECTION_PRINTER_FORMATS = [
"oksana",
]
ANATRIC_PATH = "/afs/psi.ch/project/sinq/rhel8/bin/anatric"
ANATRIC_PATH = "/afs/psi.ch/project/sinq/rhel7/bin/anatric"
ALGORITHMS = ["adaptivemaxcog", "adaptivedynamic"]
def anatric(config_file, anatric_path=ANATRIC_PATH, cwd=None, log=logger):
def anatric(config_file, anatric_path=ANATRIC_PATH, cwd=None):
comp_proc = subprocess.run(
[anatric_path, config_file],
stdout=subprocess.PIPE,
@ -32,8 +29,8 @@ def anatric(config_file, anatric_path=ANATRIC_PATH, cwd=None, log=logger):
check=True,
text=True,
)
log.info(" ".join(comp_proc.args))
log.info(comp_proc.stdout)
print(" ".join(comp_proc.args))
print(comp_proc.stdout)
class AnatricConfig:

17
pyzebra/app/app_hooks.py Normal file
View File

@ -0,0 +1,17 @@
import logging
import sys
from io import StringIO
def on_server_loaded(_server_context):
formatter = logging.Formatter(
fmt="%(asctime)s %(levelname)s: %(message)s", datefmt="%Y-%m-%d %H:%M:%S"
)
sys.stdout = StringIO()
bokeh_handler = logging.StreamHandler(StringIO())
bokeh_handler.setFormatter(formatter)
bokeh_logger = logging.getLogger("bokeh")
bokeh_logger.setLevel(logging.WARNING)
bokeh_logger.addHandler(bokeh_handler)

View File

@ -4,7 +4,7 @@ import sys
def main():
app_path = os.path.dirname(os.path.abspath(__file__))
app_path = os.path.join(os.path.dirname(os.path.abspath(__file__)))
subprocess.run(["bokeh", "serve", app_path, *sys.argv[1:]], check=True)

View File

@ -1,6 +1,5 @@
import types
from bokeh.io import curdoc
from bokeh.models import (
Button,
CellEditor,
@ -52,7 +51,6 @@ def _params_factory(function):
class FitControls:
def __init__(self):
self.log = curdoc().logger
self.params = {}
def add_function_button_callback(click):
@ -147,11 +145,7 @@ class FitControls:
def _process_scan(self, scan):
pyzebra.fit_scan(
scan,
self.params,
fit_from=self.from_spinner.value,
fit_to=self.to_spinner.value,
log=self.log,
scan, self.params, fit_from=self.from_spinner.value, fit_to=self.to_spinner.value
)
pyzebra.get_area(
scan,

View File

@ -11,7 +11,6 @@ import pyzebra
class InputControls:
def __init__(self, dataset, dlfiles, on_file_open=lambda: None, on_monitor_change=lambda: None):
doc = curdoc()
log = doc.logger
def filelist_select_update_for_proposal():
proposal_path = proposal_textinput.name
@ -46,19 +45,19 @@ class InputControls:
f_name = os.path.basename(f_path)
base, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext, log=log)
except Exception as e:
log.exception(e)
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {f_name}")
continue
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
if not new_data: # first file
new_data = file_data
pyzebra.merge_duplicates(new_data, log=log)
pyzebra.merge_duplicates(new_data)
dlfiles.set_names([base] * dlfiles.n_files)
else:
pyzebra.merge_datasets(new_data, file_data, log=log)
pyzebra.merge_datasets(new_data, file_data)
if new_data:
dataset.clear()
@ -77,13 +76,13 @@ class InputControls:
f_name = os.path.basename(f_path)
_, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext, log=log)
except Exception as e:
log.exception(e)
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {f_name}")
continue
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
pyzebra.merge_datasets(dataset, file_data, log=log)
pyzebra.merge_datasets(dataset, file_data)
if file_data:
on_file_open()
@ -98,19 +97,19 @@ class InputControls:
with io.StringIO(base64.b64decode(f_str).decode()) as file:
base, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext, log=log)
except Exception as e:
log.exception(e)
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {f_name}")
continue
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
if not new_data: # first file
new_data = file_data
pyzebra.merge_duplicates(new_data, log=log)
pyzebra.merge_duplicates(new_data)
dlfiles.set_names([base] * dlfiles.n_files)
else:
pyzebra.merge_datasets(new_data, file_data, log=log)
pyzebra.merge_datasets(new_data, file_data)
if new_data:
dataset.clear()
@ -130,13 +129,13 @@ class InputControls:
with io.StringIO(base64.b64decode(f_str).decode()) as file:
_, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext, log=log)
except Exception as e:
log.exception(e)
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {f_name}")
continue
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
pyzebra.merge_datasets(dataset, file_data, log=log)
pyzebra.merge_datasets(dataset, file_data)
if file_data:
on_file_open()

View File

@ -1,6 +1,6 @@
import argparse
import logging
from io import StringIO
import sys
from bokeh.io import curdoc
from bokeh.layouts import column, row
@ -43,17 +43,11 @@ doc.anatric_path = args.anatric_path
doc.spind_path = args.spind_path
doc.sxtal_refgen_path = args.sxtal_refgen_path
stream = StringIO()
handler = logging.StreamHandler(stream)
handler.setFormatter(
logging.Formatter(fmt="%(asctime)s %(levelname)s: %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
)
logger = logging.getLogger(str(id(doc)))
logger.setLevel(logging.INFO)
logger.addHandler(handler)
doc.logger = logger
# In app_hooks.py a StreamHandler was added to "bokeh" logger
bokeh_stream = logging.getLogger("bokeh").handlers[0].stream
log_textareainput = TextAreaInput(title="Logging output:")
log_textareainput = TextAreaInput(title="logging output:")
bokeh_log_textareainput = TextAreaInput(title="server output:")
def proposal_textinput_callback(_attr, _old, _new):
@ -71,7 +65,7 @@ def apply_button_callback():
try:
proposal_path = pyzebra.find_proposal_path(proposal)
except ValueError as e:
logger.exception(e)
print(e)
return
apply_button.disabled = True
else:
@ -100,13 +94,14 @@ doc.add_root(
panel_spind.create(),
]
),
row(log_textareainput, sizing_mode="scale_both"),
row(log_textareainput, bokeh_log_textareainput, sizing_mode="scale_both"),
)
)
def update_stdout():
log_textareainput.value = stream.getvalue()
log_textareainput.value = sys.stdout.getvalue()
bokeh_log_textareainput.value = bokeh_stream.getvalue()
doc.add_periodic_callback(update_stdout, 1000)

View File

@ -33,7 +33,6 @@ from pyzebra import EXPORT_TARGETS, app
def create():
doc = curdoc()
log = doc.logger
dataset1 = []
dataset2 = []
app_dlfiles = app.DownloadFiles(n_files=2)
@ -95,7 +94,7 @@ def create():
def file_open_button_callback():
if len(file_select.value) != 2:
log.warning("Select exactly 2 .ccl files.")
print("WARNING: Select exactly 2 .ccl files.")
return
new_data1 = []
@ -105,13 +104,13 @@ def create():
f_name = os.path.basename(f_path)
base, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext, log=log)
except Exception as e:
log.exception(e)
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {f_name}")
return
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
pyzebra.merge_duplicates(file_data, log=log)
pyzebra.merge_duplicates(file_data)
if ind == 0:
app_dlfiles.set_names([base, base])
@ -134,7 +133,7 @@ def create():
def upload_button_callback(_attr, _old, _new):
if len(upload_button.filename) != 2:
log.warning("Upload exactly 2 .ccl files.")
print("WARNING: Upload exactly 2 .ccl files.")
return
new_data1 = []
@ -143,13 +142,13 @@ def create():
with io.StringIO(base64.b64decode(f_str).decode()) as file:
base, ext = os.path.splitext(f_name)
try:
file_data = pyzebra.parse_1D(file, ext, log=log)
except Exception as e:
log.exception(e)
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {f_name}")
return
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
pyzebra.merge_duplicates(file_data, log=log)
pyzebra.merge_duplicates(file_data)
if ind == 0:
app_dlfiles.set_names([base, base])
@ -244,8 +243,8 @@ def create():
plot = figure(
x_axis_label="Scan motor",
y_axis_label="Counts",
height=470,
width=700,
plot_height=470,
plot_width=700,
tools="pan,wheel_zoom,reset",
)
@ -378,11 +377,11 @@ def create():
scan_from2 = dataset2[int(merge_from_select.value)]
if scan_into1 is scan_from1:
log.warning("Selected scans for merging are identical")
print("WARNING: Selected scans for merging are identical")
return
pyzebra.merge_scans(scan_into1, scan_from1, log=log)
pyzebra.merge_scans(scan_into2, scan_from2, log=log)
pyzebra.merge_scans(scan_into1, scan_from1)
pyzebra.merge_scans(scan_into2, scan_from2)
_update_table()
_update_plot()

View File

@ -2,7 +2,6 @@ import os
import tempfile
import numpy as np
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import (
Button,
@ -26,8 +25,6 @@ from pyzebra import EXPORT_TARGETS, app
def create():
doc = curdoc()
log = doc.logger
dataset = []
app_dlfiles = app.DownloadFiles(n_files=2)
@ -115,8 +112,8 @@ def create():
plot = figure(
x_axis_label="Scan motor",
y_axis_label="Counts",
height=470,
width=700,
plot_height=470,
plot_width=700,
tools="pan,wheel_zoom,reset",
)
@ -217,10 +214,10 @@ def create():
scan_from = dataset[int(merge_from_select.value)]
if scan_into is scan_from:
log.warning("Selected scans for merging are identical")
print("WARNING: Selected scans for merging are identical")
return
pyzebra.merge_scans(scan_into, scan_from, log=log)
pyzebra.merge_scans(scan_into, scan_from)
_update_table()
_update_plot()

View File

@ -5,7 +5,6 @@ import subprocess
import tempfile
import numpy as np
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import (
Arrow,
@ -40,8 +39,6 @@ SORT_OPT_NB = ["gamma", "nu", "omega"]
def create():
doc = curdoc()
log = doc.logger
ang_lims = {}
cif_data = {}
params = {}
@ -135,11 +132,7 @@ def create():
params = dict()
params["SPGR"] = cryst_space_group.value
params["CELL"] = cryst_cell.value
try:
ub = pyzebra.calc_ub_matrix(params, log=log)
except Exception as e:
log.exception(e)
return
ub = pyzebra.calc_ub_matrix(params)
ub_matrix.value = " ".join(ub)
ub_matrix_calc = Button(label="UB matrix:", button_type="primary", width=100)
@ -228,9 +221,9 @@ def create():
geom_template = None
pyzebra.export_geom_file(geom_path, ang_lims, geom_template)
log.info(f"Content of {geom_path}:")
print(f"Content of {geom_path}:")
with open(geom_path) as f:
log.info(f.read())
print(f.read())
priority = [sorting_0.value, sorting_1.value, sorting_2.value]
chunks = [sorting_0_dt.value, sorting_1_dt.value, sorting_2_dt.value]
@ -255,9 +248,9 @@ def create():
cfl_template = None
pyzebra.export_cfl_file(cfl_path, params, cfl_template)
log.info(f"Content of {cfl_path}:")
print(f"Content of {cfl_path}:")
with open(cfl_path) as f:
log.info(f.read())
print(f.read())
comp_proc = subprocess.run(
[pyzebra.SXTAL_REFGEN_PATH, cfl_path],
@ -267,8 +260,8 @@ def create():
stderr=subprocess.STDOUT,
text=True,
)
log.info(" ".join(comp_proc.args))
log.info(comp_proc.stdout)
print(" ".join(comp_proc.args))
print(comp_proc.stdout)
if i == 1: # all hkl files are identical, so keep only one
hkl_fname = base_fname + ".hkl"
@ -598,8 +591,8 @@ def create():
_, ext = os.path.splitext(fname)
try:
file_data = pyzebra.parse_hkl(file, ext)
except Exception as e:
log.exception(e)
except:
print(f"Error loading {fname}")
return
fnames.append(fname)
@ -611,7 +604,7 @@ def create():
plot_file = Button(label="Plot selected file(s)", button_type="primary", width=200)
plot_file.on_click(plot_file_callback)
plot = figure(height=550, width=550 + 32, tools="pan,wheel_zoom,reset")
plot = figure(plot_height=550, plot_width=550 + 32, tools="pan,wheel_zoom,reset")
plot.toolbar.logo = None
plot.xaxis.visible = False

View File

@ -24,7 +24,6 @@ from pyzebra import DATA_FACTORY_IMPLEMENTATION, REFLECTION_PRINTER_FORMATS
def create():
doc = curdoc()
log = doc.logger
config = pyzebra.AnatricConfig()
def _load_config_file(file):
@ -348,11 +347,7 @@ def create():
with tempfile.TemporaryDirectory() as temp_dir:
temp_file = temp_dir + "/config.xml"
config.save_as(temp_file)
try:
pyzebra.anatric(temp_file, anatric_path=doc.anatric_path, cwd=temp_dir, log=log)
except Exception as e:
log.exception(e)
return
pyzebra.anatric(temp_file, anatric_path=doc.anatric_path, cwd=temp_dir)
with open(os.path.join(temp_dir, config.logfile)) as f_log:
output_log.value = f_log.read()

View File

@ -36,7 +36,6 @@ IMAGE_PLOT_H = int(IMAGE_H * 2.4) + 27
def create():
doc = curdoc()
log = doc.logger
dataset = []
cami_meta = {}
@ -134,8 +133,8 @@ def create():
for f_name in file_select.value:
try:
new_data.append(pyzebra.read_detector_data(f_name))
except KeyError as e:
log.exception(e)
except KeyError:
print("Could not read data from the file.")
return
dataset.extend(new_data)
@ -276,7 +275,7 @@ def create():
frame_range.bounds = (0, n_im)
scan_motor = scan["scan_motor"]
proj_y_plot.yaxis.axis_label = f"Scanning motor, {scan_motor}"
proj_y_plot.axis[1].axis_label = f"Scanning motor, {scan_motor}"
var = scan[scan_motor]
var_start = var[0]
@ -302,8 +301,8 @@ def create():
x_range=det_x_range,
y_range=frame_range,
extra_y_ranges={"scanning_motor": scanning_motor_range},
height=540,
width=IMAGE_PLOT_W - 3,
plot_height=540,
plot_width=IMAGE_PLOT_W - 3,
tools="pan,box_zoom,wheel_zoom,reset",
active_scroll="wheel_zoom",
)
@ -326,8 +325,8 @@ def create():
x_range=det_y_range,
y_range=frame_range,
extra_y_ranges={"scanning_motor": scanning_motor_range},
height=540,
width=IMAGE_PLOT_H + 22,
plot_height=540,
plot_width=IMAGE_PLOT_H + 22,
tools="pan,box_zoom,wheel_zoom,reset",
active_scroll="wheel_zoom",
)
@ -353,8 +352,8 @@ def create():
colormap_select.on_change("value", colormap_select_callback)
colormap_select.value = "Plasma256"
def proj_auto_checkbox_callback(_attr, _old, new):
if 0 in new:
def proj_auto_checkbox_callback(state):
if state:
proj_display_min_spinner.disabled = True
proj_display_max_spinner.disabled = True
else:
@ -366,7 +365,7 @@ def create():
proj_auto_checkbox = CheckboxGroup(
labels=["Projections Intensity Range"], active=[0], width=145, margin=[10, 5, 0, 5]
)
proj_auto_checkbox.on_change("active", proj_auto_checkbox_callback)
proj_auto_checkbox.on_click(proj_auto_checkbox_callback)
def proj_display_max_spinner_callback(_attr, _old, new):
color_mapper_proj.high = new
@ -412,8 +411,8 @@ def create():
param_plot = figure(
x_axis_label="Parameter",
y_axis_label="Fit parameter",
height=400,
width=700,
plot_height=400,
plot_width=700,
tools="pan,wheel_zoom,reset",
)

View File

@ -43,7 +43,6 @@ IMAGE_PLOT_H = int(IMAGE_H * 2.4) + 27
def create():
doc = curdoc()
log = doc.logger
dataset = []
cami_meta = {}
@ -103,8 +102,8 @@ def create():
nonlocal dataset
try:
scan = pyzebra.read_detector_data(io.BytesIO(base64.b64decode(new)), None)
except Exception as e:
log.exception(e)
except KeyError:
print("Could not read data from the file.")
return
dataset = [scan]
@ -138,8 +137,8 @@ def create():
f_name = os.path.basename(f_path)
try:
file_data = [pyzebra.read_detector_data(f_path, cm)]
except Exception as e:
log.exception(e)
except:
print(f"Error loading {f_name}")
continue
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
@ -147,7 +146,7 @@ def create():
if not new_data: # first file
new_data = file_data
else:
pyzebra.merge_datasets(new_data, file_data, log=log)
pyzebra.merge_datasets(new_data, file_data)
if new_data:
dataset = new_data
@ -162,12 +161,12 @@ def create():
f_name = os.path.basename(f_path)
try:
file_data = [pyzebra.read_detector_data(f_path, None)]
except Exception as e:
log.exception(e)
except:
print(f"Error loading {f_name}")
continue
pyzebra.normalize_dataset(file_data, monitor_spinner.value)
pyzebra.merge_datasets(dataset, file_data, log=log)
pyzebra.merge_datasets(dataset, file_data)
if file_data:
_init_datatable()
@ -293,10 +292,10 @@ def create():
scan_from = dataset[int(merge_from_select.value)]
if scan_into is scan_from:
log.warning("Selected scans for merging are identical")
print("WARNING: Selected scans for merging are identical")
return
pyzebra.merge_h5_scans(scan_into, scan_from, log=log)
pyzebra.merge_h5_scans(scan_into, scan_from)
_update_table()
_update_image()
_update_proj_plots()
@ -357,8 +356,8 @@ def create():
gamma_c = gamma[det_c_y, det_c_x]
nu_c = nu[det_c_y, det_c_x]
omega_c = omega[det_c_y, det_c_x]
chi_c = scan["chi"][index]
phi_c = scan["phi"][index]
chi_c = None
phi_c = None
else: # zebra_mode == "bi"
wave = scan["wave"]
@ -407,7 +406,7 @@ def create():
frame_range.bounds = (0, n_im)
scan_motor = scan["scan_motor"]
proj_y_plot.yaxis.axis_label = f"Scanning motor, {scan_motor}"
proj_y_plot.axis[1].axis_label = f"Scanning motor, {scan_motor}"
var = scan[scan_motor]
var_start = var[0]
@ -459,8 +458,8 @@ def create():
y_range=Range1d(0, IMAGE_H, bounds=(0, IMAGE_H)),
x_axis_location="above",
y_axis_location="right",
height=IMAGE_PLOT_H,
width=IMAGE_PLOT_W,
plot_height=IMAGE_PLOT_H,
plot_width=IMAGE_PLOT_W,
toolbar_location="left",
tools="pan,box_zoom,wheel_zoom,reset",
active_scroll="wheel_zoom",
@ -510,8 +509,8 @@ def create():
proj_v = figure(
x_range=plot.x_range,
y_axis_location="right",
height=150,
width=IMAGE_PLOT_W,
plot_height=150,
plot_width=IMAGE_PLOT_W,
tools="",
toolbar_location=None,
)
@ -525,8 +524,8 @@ def create():
proj_h = figure(
x_axis_location="above",
y_range=plot.y_range,
height=IMAGE_PLOT_H,
width=150,
plot_height=IMAGE_PLOT_H,
plot_width=150,
tools="",
toolbar_location=None,
)
@ -590,8 +589,8 @@ def create():
y_range=frame_range,
extra_x_ranges={"gamma": gamma_range},
extra_y_ranges={"scanning_motor": scanning_motor_range},
height=540,
width=IMAGE_PLOT_W - 3,
plot_height=540,
plot_width=IMAGE_PLOT_W - 3,
tools="pan,box_zoom,wheel_zoom,reset",
active_scroll="wheel_zoom",
)
@ -618,8 +617,8 @@ def create():
y_range=frame_range,
extra_x_ranges={"nu": nu_range},
extra_y_ranges={"scanning_motor": scanning_motor_range},
height=540,
width=IMAGE_PLOT_H + 22,
plot_height=540,
plot_width=IMAGE_PLOT_H + 22,
tools="pan,box_zoom,wheel_zoom,reset",
active_scroll="wheel_zoom",
)
@ -637,7 +636,7 @@ def create():
proj_y_image = proj_y_plot.image(source=proj_y_image_source, color_mapper=lin_color_mapper_proj)
# ROI slice plot
roi_avg_plot = figure(height=150, width=IMAGE_PLOT_W, tools="", toolbar_location=None)
roi_avg_plot = figure(plot_height=150, plot_width=IMAGE_PLOT_W, tools="", toolbar_location=None)
roi_avg_plot_line_source = ColumnDataSource(dict(x=[], y=[]))
roi_avg_plot.line(source=roi_avg_plot_line_source, line_color="steelblue")
@ -656,8 +655,8 @@ def create():
colormap_select.on_change("value", colormap_select_callback)
colormap_select.value = "Plasma256"
def colormap_scale_rg_callback(_attr, _old, new):
if new == 0: # Linear
def colormap_scale_rg_callback(selection):
if selection == 0: # Linear
plot_image.glyph.color_mapper = lin_color_mapper
proj_x_image.glyph.color_mapper = lin_color_mapper_proj
proj_y_image.glyph.color_mapper = lin_color_mapper_proj
@ -676,10 +675,10 @@ def create():
colormap_scale_rg.active = 0
colormap_scale_rg = RadioGroup(labels=["Linear", "Logarithmic"], active=0, width=100)
colormap_scale_rg.on_change("active", colormap_scale_rg_callback)
colormap_scale_rg.on_click(colormap_scale_rg_callback)
def main_auto_checkbox_callback(_attr, _old, new):
if 0 in new:
def main_auto_checkbox_callback(state):
if state:
display_min_spinner.disabled = True
display_max_spinner.disabled = True
else:
@ -691,7 +690,7 @@ def create():
main_auto_checkbox = CheckboxGroup(
labels=["Frame Intensity Range"], active=[0], width=145, margin=[10, 5, 0, 5]
)
main_auto_checkbox.on_change("active", main_auto_checkbox_callback)
main_auto_checkbox.on_click(main_auto_checkbox_callback)
def display_max_spinner_callback(_attr, _old, new):
lin_color_mapper.high = new
@ -710,8 +709,8 @@ def create():
display_min_spinner = Spinner(value=0, disabled=bool(main_auto_checkbox.active), width=100)
display_min_spinner.on_change("value", display_min_spinner_callback)
def proj_auto_checkbox_callback(_attr, _old, new):
if 0 in new:
def proj_auto_checkbox_callback(state):
if state:
proj_display_min_spinner.disabled = True
proj_display_max_spinner.disabled = True
else:
@ -723,7 +722,7 @@ def create():
proj_auto_checkbox = CheckboxGroup(
labels=["Projections Intensity Range"], active=[0], width=145, margin=[10, 5, 0, 5]
)
proj_auto_checkbox.on_change("active", proj_auto_checkbox_callback)
proj_auto_checkbox.on_click(proj_auto_checkbox_callback)
def proj_display_max_spinner_callback(_attr, _old, new):
lin_color_mapper_proj.high = new
@ -812,7 +811,7 @@ def create():
gamma = scan["gamma"][0]
omega = scan["omega"][0]
nu = scan["nu"]
nu = scan["nu"][0]
chi = scan["chi"][0]
phi = scan["phi"][0]
@ -843,6 +842,10 @@ def create():
x_pos = scan["fit"]["x_pos"]
y_pos = scan["fit"]["y_pos"]
if scan["zebra_mode"] == "nb":
chi = None
phi = None
events_data["wave"].append(wave)
events_data["ddist"].append(ddist)
events_data["cell"].append(cell)

View File

@ -3,7 +3,6 @@ import os
import tempfile
import numpy as np
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import (
Button,
@ -39,8 +38,6 @@ def color_palette(n_colors):
def create():
doc = curdoc()
log = doc.logger
dataset = []
app_dlfiles = app.DownloadFiles(n_files=1)
@ -212,8 +209,8 @@ def create():
plot = figure(
x_axis_label="Scan motor",
y_axis_label="Counts",
height=450,
width=700,
plot_height=450,
plot_width=700,
tools="pan,wheel_zoom,reset",
)
@ -246,8 +243,8 @@ def create():
ov_plot = figure(
x_axis_label="Scan motor",
y_axis_label="Counts",
height=450,
width=700,
plot_height=450,
plot_width=700,
tools="pan,wheel_zoom,reset",
)
@ -264,8 +261,8 @@ def create():
y_axis_label="Param",
x_range=Range1d(),
y_range=Range1d(),
height=450,
width=700,
plot_height=450,
plot_width=700,
tools="pan,wheel_zoom,reset",
)
@ -282,8 +279,8 @@ def create():
param_plot = figure(
x_axis_label="Parameter",
y_axis_label="Fit parameter",
height=400,
width=700,
plot_height=400,
plot_width=700,
tools="pan,wheel_zoom,reset",
)
@ -364,10 +361,10 @@ def create():
scan_from = dataset[int(merge_from_select.value)]
if scan_into is scan_from:
log.warning("Selected scans for merging are identical")
print("WARNING: Selected scans for merging are identical")
return
pyzebra.merge_scans(scan_into, scan_from, log=log)
pyzebra.merge_scans(scan_into, scan_from)
_update_table()
_update_single_scan_plot()
_update_overview()

View File

@ -3,7 +3,6 @@ import io
import os
import numpy as np
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import (
Button,
@ -32,8 +31,6 @@ from pyzebra.app.panel_hdf_viewer import calculate_hkl
def create():
doc = curdoc()
log = doc.logger
_update_slice = None
measured_data_div = Div(text="Measured <b>HDF</b> data:")
measured_data = FileInput(accept=".hdf", multiple=True, width=200)
@ -62,8 +59,8 @@ def create():
# Read data
try:
det_data = pyzebra.read_detector_data(io.BytesIO(base64.b64decode(fdata)))
except Exception as e:
log.exception(e)
except:
print(f"Error loading {fname}")
return None
if ind == 0:
@ -182,8 +179,8 @@ def create():
_, ext = os.path.splitext(fname)
try:
fdata = pyzebra.parse_hkl(file, ext)
except Exception as e:
log.exception(e)
except:
print(f"Error loading {fname}")
return
for ind in range(len(fdata["counts"])):
@ -293,8 +290,8 @@ def create():
plot = figure(
x_range=DataRange1d(),
y_range=DataRange1d(),
height=550 + 27,
width=550 + 117,
plot_height=550 + 27,
plot_width=550 + 117,
tools="pan,wheel_zoom,reset",
)
plot.toolbar.logo = None
@ -327,7 +324,7 @@ def create():
hkl_in_plane_y = TextInput(title="in-plane Y", value="", width=100, disabled=True)
def redef_lattice_cb_callback(_attr, _old, new):
if 0 in new:
if new:
redef_lattice_ti.disabled = False
else:
redef_lattice_ti.disabled = True
@ -337,7 +334,7 @@ def create():
redef_lattice_ti = TextInput(width=490, disabled=True)
def redef_ub_cb_callback(_attr, _old, new):
if 0 in new:
if new:
redef_ub_ti.disabled = False
else:
redef_ub_ti.disabled = True
@ -372,8 +369,8 @@ def create():
display_max_ni = NumericInput(title="max:", value=1, mode="float", width=70)
display_max_ni.on_change("value", display_max_ni_callback)
def colormap_scale_rg_callback(_attr, _old, new):
if new == 0: # Linear
def colormap_scale_rg_callback(selection):
if selection == 0: # Linear
plot_image.glyph.color_mapper = lin_color_mapper
lin_color_bar.visible = True
log_color_bar.visible = False
@ -387,7 +384,7 @@ def create():
colormap_scale_rg.active = 0
colormap_scale_rg = RadioGroup(labels=["Linear", "Logarithmic"], active=0, width=100)
colormap_scale_rg.on_change("active", colormap_scale_rg_callback)
colormap_scale_rg.on_click(colormap_scale_rg_callback)
xrange_min_ni = NumericInput(title="x range min:", value=0, mode="float", width=70)
xrange_max_ni = NumericInput(title="max:", value=1, mode="float", width=70)
@ -398,7 +395,7 @@ def create():
yrange_step_ni = NumericInput(title="y mesh:", value=0.01, mode="float", width=70)
def auto_range_cb_callback(_attr, _old, new):
if 0 in new:
if new:
xrange_min_ni.disabled = True
xrange_max_ni.disabled = True
yrange_min_ni.disabled = True

View File

@ -21,7 +21,6 @@ import pyzebra
def create():
doc = curdoc()
log = doc.logger
events_data = doc.events_data
npeaks_spinner = Spinner(title="Number of peaks from hdf_view panel:", disabled=True)
@ -64,8 +63,8 @@ def create():
stderr=subprocess.STDOUT,
text=True,
)
log.info(" ".join(comp_proc.args))
log.info(comp_proc.stdout)
print(" ".join(comp_proc.args))
print(comp_proc.stdout)
# prepare an event file
diff_vec = []
@ -95,9 +94,9 @@ def create():
f"{x_pos} {y_pos} {intensity} {snr_cnts} {dv1} {dv2} {dv3} {d_spacing}\n"
)
log.info(f"Content of {temp_event_file}:")
print(f"Content of {temp_event_file}:")
with open(temp_event_file) as f:
log.info(f.read())
print(f.read())
comp_proc = subprocess.run(
[
@ -124,8 +123,8 @@ def create():
stderr=subprocess.STDOUT,
text=True,
)
log.info(" ".join(comp_proc.args))
log.info(comp_proc.stdout)
print(" ".join(comp_proc.args))
print(comp_proc.stdout)
spind_out_file = os.path.join(temp_dir, "spind.txt")
spind_res = dict(
@ -147,12 +146,12 @@ def create():
ub_matrices.append(ub_matrix_spind)
spind_res["ub_matrix"].append(str(ub_matrix_spind * 1e-10))
log.info(f"Content of {spind_out_file}:")
print(f"Content of {spind_out_file}:")
with open(spind_out_file) as f:
log.info(f.read())
print(f.read())
except FileNotFoundError:
log.warning("No results from spind")
print("No results from spind")
results_table_source.data.update(spind_res)

View File

@ -3,7 +3,6 @@ import io
import os
import numpy as np
from bokeh.io import curdoc
from bokeh.layouts import column, row
from bokeh.models import (
Arrow,
@ -31,9 +30,6 @@ import pyzebra
class PlotHKL:
def __init__(self):
doc = curdoc()
log = doc.logger
_update_slice = None
measured_data_div = Div(text="Measured <b>CCL</b> data:")
measured_data = FileInput(accept=".ccl", multiple=True, width=200)
@ -66,9 +62,9 @@ class PlotHKL:
with io.StringIO(base64.b64decode(md_fdata[0]).decode()) as file:
_, ext = os.path.splitext(md_fnames[0])
try:
file_data = pyzebra.parse_1D(file, ext, log=log)
except Exception as e:
log.exception(e)
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {md_fnames[0]}")
return None
alpha = file_data[0]["alpha_cell"] * np.pi / 180.0
@ -148,9 +144,9 @@ class PlotHKL:
with io.StringIO(base64.b64decode(md_fdata[j]).decode()) as file:
_, ext = os.path.splitext(md_fname)
try:
file_data = pyzebra.parse_1D(file, ext, log=log)
except Exception as e:
log.exception(e)
file_data = pyzebra.parse_1D(file, ext)
except:
print(f"Error loading {md_fname}")
return None
pyzebra.normalize_dataset(file_data)
@ -295,8 +291,8 @@ class PlotHKL:
_, ext = os.path.splitext(fname)
try:
fdata = pyzebra.parse_hkl(file, ext)
except Exception as e:
log.exception(e)
except:
print(f"Error loading {fname}")
return
for ind in range(len(fdata["counts"])):
@ -445,7 +441,7 @@ class PlotHKL:
plot_file = Button(label="Plot selected file(s)", button_type="primary", width=200)
plot_file.on_click(plot_file_callback)
plot = figure(height=550, width=550 + 32, tools="pan,wheel_zoom,reset")
plot = figure(plot_height=550, plot_width=550 + 32, tools="pan,wheel_zoom,reset")
plot.toolbar.logo = None
plot.xaxis.visible = False
@ -521,7 +517,7 @@ class PlotHKL:
tol_k_ni = NumericInput(title="k tolerance:", value=0.01, mode="float", width=100)
def show_legend_cb_callback(_attr, _old, new):
plot.legend.visible = 0 in new
plot.legend.visible = bool(new)
show_legend_cb = CheckboxGroup(labels=["Show legend"], active=[0])
show_legend_cb.on_change("active", show_legend_cb_callback)

View File

@ -1,4 +1,3 @@
import logging
import os
import re
from ast import literal_eval
@ -6,51 +5,44 @@ from collections import defaultdict
import numpy as np
logger = logging.getLogger(__name__)
META_VARS_STR = (
"instrument",
"title",
"comment",
"sample",
"user",
"proposal_id",
"ProposalID",
"original_filename",
"date",
"zebra_mode",
"zebramode",
"sample_name",
"proposal",
"proposal_user",
"proposal_title",
"proposal_email",
"detectorDistance",
)
META_VARS_FLOAT = (
"omega",
"mf",
"2-theta",
"chi",
"phi",
"nu",
"temp",
"wavelength",
"a",
"b",
"c",
"alpha",
"beta",
"gamma",
"omega",
"chi",
"phi",
"temp",
"mf",
"temperature",
"magnetic_field",
"cex1",
"cex2",
"wavelength",
"mexz",
"moml",
"mcvl",
"momu",
"mcvu",
"2-theta",
"twotheta",
"nu",
"gamma_angle",
"polar_angle",
"tilt_angle",
"distance",
"distance_an",
"snv",
"snh",
"snvm",
@ -63,13 +55,6 @@ META_VARS_FLOAT = (
"s2vb",
"s2hr",
"s2hl",
"a5",
"a6",
"a4t",
"s2ant",
"s2anb",
"s2anl",
"s2anr",
)
META_UB_MATRIX = ("ub1j", "ub2j", "ub3j", "UB")
@ -114,7 +99,7 @@ def load_1D(filepath):
return dataset
def parse_1D(fileobj, data_type, log=logger):
def parse_1D(fileobj, data_type):
metadata = {"data_type": data_type}
# read metadata
@ -131,23 +116,13 @@ def parse_1D(fileobj, data_type, log=logger):
var_name = var_name.strip()
value = value.strip()
if value == "UNKNOWN":
metadata[var_name] = None
continue
try:
if var_name in META_VARS_STR:
if var_name == "zebramode":
var_name = "zebra_mode"
metadata[var_name] = value
elif var_name in META_VARS_FLOAT:
if var_name == "2-theta": # fix that angle name not to be an expression
var_name = "twotheta"
if var_name == "temperature":
var_name = "temp"
if var_name == "magnetic_field":
var_name = "mf"
if var_name in ("a", "b", "c", "alpha", "beta", "gamma"):
var_name += "_cell"
metadata[var_name] = float(value)
@ -162,7 +137,7 @@ def parse_1D(fileobj, data_type, log=logger):
metadata["ub"][row, :] = list(map(float, value.split()))
except Exception:
log.error(f"Error reading {var_name} with value '{value}'")
print(f"Error reading {var_name} with value '{value}'")
metadata[var_name] = 0
# handle older files that don't contain "zebra_mode" metadata
@ -227,18 +202,15 @@ def parse_1D(fileobj, data_type, log=logger):
dataset.append({**metadata, **scan})
elif data_type == ".dat":
# TODO: this might need to be adapted in the future, when "gamma" will be added to dat files
if metadata["zebra_mode"] == "nb":
if "gamma_angle" in metadata:
# support for the new format
metadata["gamma"] = metadata["gamma_angle"]
else:
metadata["gamma"] = metadata["twotheta"]
metadata["gamma"] = metadata["twotheta"]
scan = defaultdict(list)
scan["export"] = True
match = re.search("Scanning Variables: (.*), Steps: (.*)", next(fileobj))
motors = [motor.strip().lower() for motor in match.group(1).split(",")]
motors = [motor.lower() for motor in match.group(1).split(", ")]
# Steps can be separated by " " or ", "
steps = [float(step.strip(",")) for step in match.group(2).split()]
@ -300,7 +272,7 @@ def parse_1D(fileobj, data_type, log=logger):
dataset.append({**metadata, **scan})
else:
log.error("Unknown file extention")
print("Unknown file extention")
return dataset

View File

@ -1,4 +1,3 @@
import logging
import os
import numpy as np
@ -7,8 +6,6 @@ from scipy.integrate import simpson, trapezoid
from pyzebra import CCL_ANGLES
logger = logging.getLogger(__name__)
PARAM_PRECISIONS = {
"twotheta": 0.1,
"chi": 0.1,
@ -36,12 +33,12 @@ def normalize_dataset(dataset, monitor=100_000):
scan["monitor"] = monitor
def merge_duplicates(dataset, log=logger):
merged = np.zeros(len(dataset), dtype=bool)
def merge_duplicates(dataset):
merged = np.zeros(len(dataset), dtype=np.bool)
for ind_into, scan_into in enumerate(dataset):
for ind_from, scan_from in enumerate(dataset[ind_into + 1 :], start=ind_into + 1):
if _parameters_match(scan_into, scan_from) and not merged[ind_from]:
merge_scans(scan_into, scan_from, log=log)
merge_scans(scan_into, scan_from)
merged[ind_from] = True
@ -78,30 +75,28 @@ def _parameters_match(scan1, scan2):
return True
def merge_datasets(dataset_into, dataset_from, log=logger):
def merge_datasets(dataset_into, dataset_from):
scan_motors_into = dataset_into[0]["scan_motors"]
scan_motors_from = dataset_from[0]["scan_motors"]
if scan_motors_into != scan_motors_from:
log.warning(
f"Scan motors mismatch between datasets: {scan_motors_into} vs {scan_motors_from}"
)
print(f"Scan motors mismatch between datasets: {scan_motors_into} vs {scan_motors_from}")
return
merged = np.zeros(len(dataset_from), dtype=bool)
merged = np.zeros(len(dataset_from), dtype=np.bool)
for scan_into in dataset_into:
for ind, scan_from in enumerate(dataset_from):
if _parameters_match(scan_into, scan_from) and not merged[ind]:
if scan_into["counts"].ndim == 3:
merge_h5_scans(scan_into, scan_from, log=log)
merge_h5_scans(scan_into, scan_from)
else: # scan_into["counts"].ndim == 1
merge_scans(scan_into, scan_from, log=log)
merge_scans(scan_into, scan_from)
merged[ind] = True
for scan_from in dataset_from:
dataset_into.append(scan_from)
def merge_scans(scan_into, scan_from, log=logger):
def merge_scans(scan_into, scan_from):
if "init_scan" not in scan_into:
scan_into["init_scan"] = scan_into.copy()
@ -153,10 +148,10 @@ def merge_scans(scan_into, scan_from, log=logger):
fname1 = os.path.basename(scan_into["original_filename"])
fname2 = os.path.basename(scan_from["original_filename"])
log.info(f'Merging scans: {scan_into["idx"]} ({fname1}) <-- {scan_from["idx"]} ({fname2})')
print(f'Merging scans: {scan_into["idx"]} ({fname1}) <-- {scan_from["idx"]} ({fname2})')
def merge_h5_scans(scan_into, scan_from, log=logger):
def merge_h5_scans(scan_into, scan_from):
if "init_scan" not in scan_into:
scan_into["init_scan"] = scan_into.copy()
@ -165,7 +160,7 @@ def merge_h5_scans(scan_into, scan_from, log=logger):
for scan in scan_into["merged_scans"]:
if scan_from is scan:
log.warning("Already merged scan")
print("Already merged scan")
return
scan_into["merged_scans"].append(scan_from)
@ -217,7 +212,7 @@ def merge_h5_scans(scan_into, scan_from, log=logger):
fname1 = os.path.basename(scan_into["original_filename"])
fname2 = os.path.basename(scan_from["original_filename"])
log.info(f'Merging scans: {scan_into["idx"]} ({fname1}) <-- {scan_from["idx"]} ({fname2})')
print(f'Merging scans: {scan_into["idx"]} ({fname1}) <-- {scan_from["idx"]} ({fname2})')
def restore_scan(scan):
@ -235,7 +230,7 @@ def restore_scan(scan):
scan["export"] = True
def fit_scan(scan, model_dict, fit_from=None, fit_to=None, log=logger):
def fit_scan(scan, model_dict, fit_from=None, fit_to=None):
if fit_from is None:
fit_from = -np.inf
if fit_to is None:
@ -248,7 +243,7 @@ def fit_scan(scan, model_dict, fit_from=None, fit_to=None, log=logger):
# apply fitting range
fit_ind = (fit_from <= x_fit) & (x_fit <= fit_to)
if not np.any(fit_ind):
log.warning(f"No data in fit range for scan {scan['idx']}")
print(f"No data in fit range for scan {scan['idx']}")
return
y_fit = y_fit[fit_ind]

View File

@ -47,9 +47,9 @@ def parse_h5meta(file):
if variable in META_STR:
pass
elif variable in META_CELL:
value = np.array(value.split(",")[:6], dtype=float)
value = np.array(value.split(",")[:6], dtype=np.float)
elif variable in META_MATRIX:
value = np.array(value.split(",")[:9], dtype=float).reshape(3, 3)
value = np.array(value.split(",")[:9], dtype=np.float).reshape(3, 3)
else: # default is a single float number
value = float(value)
content[section][variable] = value
@ -69,7 +69,7 @@ def read_detector_data(filepath, cami_meta=None):
ndarray: A 3D array of data, omega, gamma, nu.
"""
with h5py.File(filepath, "r") as h5f:
counts = h5f["/entry1/area_detector2/data"][:].astype(float)
counts = h5f["/entry1/area_detector2/data"][:].astype(np.float64)
n, cols, rows = counts.shape
if "/entry1/experiment_identifier" in h5f: # old format
@ -114,14 +114,10 @@ def read_detector_data(filepath, cami_meta=None):
scan["nu"] = h5f["/entry1/ZEBRA/area_detector2/tilt_angle"][0]
scan["ddist"] = h5f["/entry1/ZEBRA/area_detector2/distance"][0]
scan["wave"] = h5f["/entry1/ZEBRA/monochromator/wavelength"][0]
if scan["zebra_mode"] == "nb":
scan["chi"] = np.array([180])
scan["phi"] = np.array([0])
elif scan["zebra_mode"] == "bi":
scan["chi"] = h5f["/entry1/sample/chi"][:]
scan["phi"] = h5f["/entry1/sample/phi"][:]
scan["chi"] = h5f["/entry1/sample/chi"][:]
if len(scan["chi"]) == 1:
scan["chi"] = np.ones(n) * scan["chi"]
scan["phi"] = h5f["/entry1/sample/phi"][:]
if len(scan["phi"]) == 1:
scan["phi"] = np.ones(n) * scan["phi"]
if h5f["/entry1/sample/UB"].size == 0:
@ -148,21 +144,11 @@ def read_detector_data(filepath, cami_meta=None):
if "/entry1/sample/magnetic_field" in h5f:
scan["mf"] = h5f["/entry1/sample/magnetic_field"][:]
if "mf" in scan:
# TODO: NaNs are not JSON compliant, so replace them with None
# this is not a great solution, but makes it safe to use the array in bokeh
scan["mf"] = np.where(np.isnan(scan["mf"]), None, scan["mf"])
if "/entry1/sample/temperature" in h5f:
scan["temp"] = h5f["/entry1/sample/temperature"][:]
elif "/entry1/sample/Ts/value" in h5f:
scan["temp"] = h5f["/entry1/sample/Ts/value"][:]
if "temp" in scan:
# TODO: NaNs are not JSON compliant, so replace them with None
# this is not a great solution, but makes it safe to use the array in bokeh
scan["temp"] = np.where(np.isnan(scan["temp"]), None, scan["temp"])
# overwrite metadata from .cami
if cami_meta is not None:
if "crystal" in cami_meta:

View File

@ -1,5 +1,4 @@
import io
import logging
import os
import subprocess
import tempfile
@ -7,9 +6,7 @@ from math import ceil, floor
import numpy as np
logger = logging.getLogger(__name__)
SXTAL_REFGEN_PATH = "/afs/psi.ch/project/sinq/rhel8/bin/Sxtal_Refgen"
SXTAL_REFGEN_PATH = "/afs/psi.ch/project/sinq/rhel7/bin/Sxtal_Refgen"
_zebraBI_default_geom = """GEOM 2 Bissecting - HiCHI
BLFR z-up
@ -147,7 +144,7 @@ def export_geom_file(path, ang_lims, template=None):
out_file.write(f"{'':<8}{ang:<10}{vals[0]:<10}{vals[1]:<10}{vals[2]:<10}\n")
def calc_ub_matrix(params, log=logger):
def calc_ub_matrix(params):
with tempfile.TemporaryDirectory() as temp_dir:
cfl_file = os.path.join(temp_dir, "ub_matrix.cfl")
@ -163,8 +160,8 @@ def calc_ub_matrix(params, log=logger):
stderr=subprocess.STDOUT,
text=True,
)
log.info(" ".join(comp_proc.args))
log.info(comp_proc.stdout)
print(" ".join(comp_proc.args))
print(comp_proc.stdout)
sfa_file = os.path.join(temp_dir, "ub_matrix.sfa")
ub_matrix = []

View File

@ -0,0 +1,11 @@
[Unit]
Description=pyzebra-test web server
[Service]
Type=simple
User=pyzebra
ExecStart=/bin/bash /usr/local/sbin/pyzebra-test.sh
Restart=always
[Install]
WantedBy=multi-user.target

4
scripts/pyzebra-test.sh Normal file
View File

@ -0,0 +1,4 @@
source /opt/miniconda3/etc/profile.d/conda.sh
conda activate test
python /opt/pyzebra/pyzebra/app/cli.py --port=5010 --allow-websocket-origin=pyzebra.psi.ch:5010 --args --spind-path=/opt/spind

10
scripts/pyzebra.service Normal file
View File

@ -0,0 +1,10 @@
[Unit]
Description=pyzebra web server
[Service]
Type=simple
ExecStart=/bin/bash /usr/local/sbin/pyzebra.sh
Restart=always
[Install]
WantedBy=multi-user.target

4
scripts/pyzebra.sh Normal file
View File

@ -0,0 +1,4 @@
source /opt/miniconda3/etc/profile.d/conda.sh
conda activate prod
pyzebra --port=80 --allow-websocket-origin=pyzebra.psi.ch:80 --args --spind-path=/opt/spind