Add hkl/mhkl plotting
This commit is contained in:
parent
9f2585139b
commit
f6f4f64891
@ -4,20 +4,31 @@ import os
|
||||
import subprocess
|
||||
import tempfile
|
||||
|
||||
import numpy as np
|
||||
from bokeh.layouts import column, row
|
||||
from bokeh.models import (
|
||||
Arrow,
|
||||
Button,
|
||||
CheckboxGroup,
|
||||
ColumnDataSource,
|
||||
Div,
|
||||
FileInput,
|
||||
Legend,
|
||||
LegendItem,
|
||||
MultiSelect,
|
||||
NormalHead,
|
||||
NumericInput,
|
||||
Panel,
|
||||
RadioGroup,
|
||||
Range1d,
|
||||
Select,
|
||||
Spacer,
|
||||
Spinner,
|
||||
TextAreaInput,
|
||||
TextInput,
|
||||
)
|
||||
from bokeh.palettes import Dark2
|
||||
from bokeh.plotting import figure
|
||||
|
||||
import pyzebra
|
||||
from pyzebra import app
|
||||
@ -292,6 +303,253 @@ def create():
|
||||
|
||||
plot_list = Button(label="Plot selected list", button_type="primary", width=200, disabled=True)
|
||||
|
||||
# Plot
|
||||
upload_data_div = Div(text="Open hkl/mhkl data:")
|
||||
upload_data = FileInput(accept=".hkl,.mhkl", multiple=True, width=200)
|
||||
|
||||
min_grid_x = -10
|
||||
max_grid_x = 10
|
||||
min_grid_y = -5
|
||||
max_grid_y = 5
|
||||
cmap = Dark2[8]
|
||||
syms = ["circle", "inverted_triangle", "square", "diamond", "star", "triangle"]
|
||||
|
||||
def plot_file_callback():
|
||||
orth_dir = list(map(float, hkl_normal.value.split()))
|
||||
cut_tol = hkl_delta.value
|
||||
cut_or = hkl_cut.value
|
||||
x_dir = list(map(float, hkl_in_plane_x.value.split()))
|
||||
|
||||
k = np.array(k_vectors.value.split()).astype(float).reshape(-1, 3)
|
||||
tol_k = tol_k_ni.value
|
||||
|
||||
# different symbols based on file number
|
||||
file_flag = 0 in disting_opt_cb.active
|
||||
# scale marker size according to intensity
|
||||
intensity_flag = 1 in disting_opt_cb.active
|
||||
# use color to mark different propagation vectors
|
||||
prop_legend_flag = 2 in disting_opt_cb.active
|
||||
|
||||
lattice = list(map(float, cryst_cell.value.strip().split()))
|
||||
alpha = lattice[3] * np.pi / 180.0
|
||||
beta = lattice[4] * np.pi / 180.0
|
||||
gamma = lattice[5] * np.pi / 180.0
|
||||
|
||||
# reciprocal angle parameters
|
||||
beta_star = np.arccos(
|
||||
(np.cos(alpha) * np.cos(gamma) - np.cos(beta)) / (np.sin(alpha) * np.sin(gamma))
|
||||
)
|
||||
gamma_star = np.arccos(
|
||||
(np.cos(alpha) * np.cos(beta) - np.cos(gamma)) / (np.sin(alpha) * np.sin(beta))
|
||||
)
|
||||
|
||||
# conversion matrix
|
||||
M = np.array(
|
||||
[
|
||||
[1, np.cos(gamma_star), np.cos(beta_star)],
|
||||
[0, np.sin(gamma_star), -np.sin(beta_star) * np.cos(alpha)],
|
||||
[0, 0, np.sin(beta_star) * np.sin(alpha)],
|
||||
]
|
||||
)
|
||||
|
||||
# Calculate in-plane y-direction
|
||||
x_c = M @ x_dir
|
||||
o_c = M @ orth_dir
|
||||
|
||||
# Calculate y-direction in plot (orthogonal to x-direction and out-of-plane direction)
|
||||
y_c = np.cross(x_c, o_c)
|
||||
hkl_in_plane_y.value = " ".join([f"{val:.1f}" for val in y_c])
|
||||
|
||||
# Normalize all directions
|
||||
y_c = y_c / np.linalg.norm(y_c)
|
||||
x_c = x_c / np.linalg.norm(x_c)
|
||||
o_c = o_c / np.linalg.norm(o_c)
|
||||
|
||||
# Read all data
|
||||
hkl_coord = []
|
||||
intensity_vec = []
|
||||
k_flag_vec = []
|
||||
file_flag_vec = []
|
||||
|
||||
ul_fnames = upload_data.filename
|
||||
ul_fdata = upload_data.value
|
||||
|
||||
for j, fname in enumerate(ul_fnames):
|
||||
with io.StringIO(base64.b64decode(ul_fdata[j]).decode()) as file:
|
||||
_, ext = os.path.splitext(fname)
|
||||
try:
|
||||
file_data = pyzebra.parse_hkl(file, ext)
|
||||
except:
|
||||
print(f"Error loading {fname}")
|
||||
return
|
||||
|
||||
for ind in range(len(file_data["counts"])):
|
||||
# Recognize k_flag_vec
|
||||
hkl = np.array([file_data["h"][ind], file_data["k"][ind], file_data["k"][ind]])
|
||||
reduced_hkl_m = np.minimum(1 - hkl % 1, hkl % 1)
|
||||
for ind, _k in enumerate(k):
|
||||
if all(np.abs(reduced_hkl_m - _k) < tol_k):
|
||||
k_flag_vec.append(ind)
|
||||
break
|
||||
else:
|
||||
# not required
|
||||
continue
|
||||
|
||||
# Save data
|
||||
hkl_coord.append(hkl)
|
||||
intensity_vec.append(file_data["counts"][ind])
|
||||
file_flag_vec.append(j)
|
||||
|
||||
plot.x_range.start = plot.x_range.reset_start = -2
|
||||
plot.x_range.end = plot.x_range.reset_end = 5
|
||||
plot.y_range.start = plot.y_range.reset_start = -4
|
||||
plot.y_range.end = plot.y_range.reset_end = 3.5
|
||||
|
||||
# Plot grid lines
|
||||
xs, ys = [], []
|
||||
xs_minor, ys_minor = [], []
|
||||
for yy in np.arange(min_grid_y, max_grid_y, 1):
|
||||
hkl1 = M @ [0, yy, 0]
|
||||
xs.append([min_grid_y, max_grid_y])
|
||||
ys.append([hkl1[1], hkl1[1]])
|
||||
|
||||
for xx in np.arange(min_grid_x, max_grid_x, 1):
|
||||
hkl1 = M @ [xx, min_grid_x, 0]
|
||||
hkl2 = M @ [xx, max_grid_x, 0]
|
||||
xs.append([hkl1[0], hkl2[0]])
|
||||
ys.append([hkl1[1], hkl2[1]])
|
||||
|
||||
for yy in np.arange(min_grid_y, max_grid_y, 0.5):
|
||||
hkl1 = M @ [0, yy, 0]
|
||||
xs_minor.append([min_grid_y, max_grid_y])
|
||||
ys_minor.append([hkl1[1], hkl1[1]])
|
||||
|
||||
for xx in np.arange(min_grid_x, max_grid_x, 0.5):
|
||||
hkl1 = M @ [xx, min_grid_x, 0]
|
||||
hkl2 = M @ [xx, max_grid_x, 0]
|
||||
xs_minor.append([hkl1[0], hkl2[0]])
|
||||
ys_minor.append([hkl1[1], hkl2[1]])
|
||||
|
||||
grid_source.data.update(xs=xs, ys=ys)
|
||||
minor_grid_source.data.update(xs=xs_minor, ys=ys_minor)
|
||||
|
||||
scan_x, scan_y = [], []
|
||||
scan_m, scan_s, scan_c, scan_l = [], [], [], []
|
||||
for j in range(len(hkl_coord)):
|
||||
# Get middle hkl from list
|
||||
hklm = M @ hkl_coord[j]
|
||||
|
||||
# Decide if point is in the cut
|
||||
proj = np.dot(hklm, o_c)
|
||||
if abs(proj - cut_or) >= cut_tol:
|
||||
continue
|
||||
|
||||
if intensity_flag:
|
||||
markersize = max(1, int(intensity_vec[j] / max(intensity_vec) * 20))
|
||||
else:
|
||||
markersize = 4
|
||||
|
||||
if file_flag:
|
||||
plot_symbol = syms[file_flag_vec[j]]
|
||||
else:
|
||||
plot_symbol = "circle"
|
||||
|
||||
if prop_legend_flag:
|
||||
col_value = cmap[k_flag_vec[j]]
|
||||
else:
|
||||
col_value = "black"
|
||||
|
||||
# Plot middle point of scan
|
||||
scan_x.append(hklm[0])
|
||||
scan_y.append(hklm[1])
|
||||
scan_m.append(plot_symbol)
|
||||
scan_s.append(markersize)
|
||||
|
||||
# Color and legend label
|
||||
scan_c.append(col_value)
|
||||
scan_l.append(ul_fnames[file_flag_vec[j]])
|
||||
|
||||
scatter_source.data.update(x=scan_x, y=scan_y, m=scan_m, s=scan_s, c=scan_c, l=scan_l)
|
||||
|
||||
arrow1.visible = True
|
||||
arrow1.x_end = x_c[0]
|
||||
arrow1.y_end = x_c[1]
|
||||
arrow2.visible = True
|
||||
arrow2.x_end = y_c[0]
|
||||
arrow2.y_end = y_c[1]
|
||||
|
||||
kvect_source.data.update(
|
||||
x=[x_c[0] / 2, y_c[0] / 2 - 0.1], y=[x_c[1] - 0.1, y_c[1] / 2], text=["h", "k"]
|
||||
)
|
||||
|
||||
# Legend items for different file entries (symbol)
|
||||
legend_items = []
|
||||
if file_flag:
|
||||
labels, inds = np.unique(scatter_source.data["l"], return_index=True)
|
||||
for label, ind in zip(labels, inds):
|
||||
legend_items.append(LegendItem(label=label, renderers=[scatter], index=ind))
|
||||
|
||||
# Legend items for propagation vector (color)
|
||||
if prop_legend_flag:
|
||||
labels, inds = np.unique(scatter_source.data["c"], return_index=True)
|
||||
for label, ind in zip(labels, inds):
|
||||
label = f"k={k[cmap.index(label)]}"
|
||||
legend_items.append(LegendItem(label=label, renderers=[scatter], index=ind))
|
||||
|
||||
plot.legend.items = legend_items
|
||||
|
||||
plot_file = Button(label="Plot selected file(s)", button_type="primary", width=200)
|
||||
plot_file.on_click(plot_file_callback)
|
||||
|
||||
plot = figure(
|
||||
x_range=Range1d(),
|
||||
y_range=Range1d(),
|
||||
plot_height=450,
|
||||
plot_width=450 + 32,
|
||||
tools="pan,wheel_zoom,reset",
|
||||
)
|
||||
plot.toolbar.logo = None
|
||||
|
||||
grid_source = ColumnDataSource(dict(xs=[], ys=[]))
|
||||
plot.multi_line(source=grid_source, line_color="gray")
|
||||
|
||||
minor_grid_source = ColumnDataSource(dict(xs=[], ys=[]))
|
||||
plot.multi_line(source=minor_grid_source, line_color="gray", line_dash="dotted")
|
||||
|
||||
scatter_source = ColumnDataSource(dict(x=[], y=[], m=[], s=[], c=[], l=[]))
|
||||
scatter = plot.scatter(
|
||||
source=scatter_source, marker="m", size="s", fill_color="c", line_color="c"
|
||||
)
|
||||
|
||||
arrow1 = Arrow(x_start=0, y_start=0, x_end=0, y_end=0, end=NormalHead(size=10), visible=False)
|
||||
plot.add_layout(arrow1)
|
||||
arrow2 = Arrow(x_start=0, y_start=0, x_end=0, y_end=0, end=NormalHead(size=10), visible=False)
|
||||
plot.add_layout(arrow2)
|
||||
|
||||
kvect_source = ColumnDataSource(dict(x=[], y=[], text=[]))
|
||||
plot.text(source=kvect_source)
|
||||
|
||||
plot.add_layout(Legend(items=[], location="top_left", click_policy="hide"))
|
||||
|
||||
hkl_div = Div(text="HKL:", margin=(5, 5, 0, 5))
|
||||
hkl_normal = TextInput(title="normal", value="0 0 1", width=70)
|
||||
hkl_cut = Spinner(title="cut", value=0, step=0.1, width=70)
|
||||
hkl_delta = NumericInput(title="delta", value=0.1, mode="float", width=70)
|
||||
hkl_in_plane_x = TextInput(title="in-plane X", value="1 0 0", width=70)
|
||||
hkl_in_plane_y = TextInput(title="in-plane Y", value="", width=100, disabled=True)
|
||||
|
||||
disting_opt_div = Div(text="Distinguish options:", margin=(5, 5, 0, 5))
|
||||
disting_opt_cb = CheckboxGroup(
|
||||
labels=["files (symbols)", "intensities (size)", "k vectors nucl/magn (colors)"],
|
||||
active=[0, 1, 2],
|
||||
width=200,
|
||||
)
|
||||
|
||||
k_vectors = TextAreaInput(
|
||||
title="k vectors:", value="0.0 0.0 0.0\n0.5 0.0 0.0\n0.5 0.5 0.0", width=150
|
||||
)
|
||||
tol_k_ni = NumericInput(title="k tolerance:", value=0.01, mode="float", width=100)
|
||||
|
||||
fileinput_layout = row(open_cfl_div, open_cfl, open_cif_div, open_cif, open_geom_div, open_geom)
|
||||
|
||||
geom_layout = column(geom_radiogroup_div, geom_radiogroup)
|
||||
@ -324,7 +582,18 @@ def create():
|
||||
row(app_dlfiles.button, plot_list),
|
||||
)
|
||||
|
||||
column2_layout = app.PlotHKL().layout
|
||||
hkl_layout = column(
|
||||
hkl_div,
|
||||
row(hkl_normal, hkl_cut, hkl_delta, Spacer(width=10), hkl_in_plane_x, hkl_in_plane_y),
|
||||
)
|
||||
disting_layout = column(disting_opt_div, disting_opt_cb)
|
||||
|
||||
column2_layout = column(
|
||||
row(upload_data_div, upload_data, plot_file),
|
||||
plot,
|
||||
row(hkl_layout, k_vectors),
|
||||
row(disting_layout, tol_k_ni),
|
||||
)
|
||||
|
||||
tab_layout = row(column1_layout, column2_layout)
|
||||
|
||||
|
@ -1,5 +1,7 @@
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
SINQ_PATH = "/afs/psi.ch/project/sinqdata"
|
||||
ZEBRA_PROPOSALS_PATH = os.path.join(SINQ_PATH, "{year}/zebra/{proposal}")
|
||||
|
||||
@ -15,3 +17,20 @@ def find_proposal_path(proposal):
|
||||
raise ValueError(f"Can not find data for proposal '{proposal}'")
|
||||
|
||||
return proposal_path
|
||||
|
||||
|
||||
def parse_hkl(fileobj, data_type):
|
||||
next(fileobj)
|
||||
fields = map(str.lower, next(fileobj).strip("!").strip().split())
|
||||
next(fileobj)
|
||||
data = np.loadtxt(fileobj, unpack=True)
|
||||
res = dict(zip(fields, data))
|
||||
|
||||
# adapt to .ccl/.dat files naming convention
|
||||
res["counts"] = res.pop("f2")
|
||||
|
||||
if data_type == ".hkl":
|
||||
for ind in ("h", "k", "l"):
|
||||
res[ind] = res[ind].astype(int)
|
||||
|
||||
return res
|
||||
|
Loading…
x
Reference in New Issue
Block a user