Update param_study_moduls.py

Updated the create_dataframe and added function called variables, which tries to decide which variables to plot in parametric study and q scans. Works good for primary variable (usually om), and reduces the secondary (slice variable, temperature, mag.field,...) variables to a few candidates from which one has to be picked. In one set for param study, it identified all parameters correctly, in q scan, the temperature varied as well as H index, so technically both could be used, but only one makes sense and that will have to be picked by user.
This commit is contained in:
JakHolzer 2020-10-30 11:45:24 +01:00 committed by GitHub
parent 0856705024
commit dbc643aba9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -7,10 +7,10 @@ import pandas as pd
import scipy.io as sio
import uncertainties as u
from mpl_toolkits.mplot3d import Axes3D # dont delete, otherwise waterfall wont work
import collections
from .ccl_io import load_1D
def create_tuples(x, y, y_err):
"""creates tuples for sorting and merginng of the data
Counts need to be normalized to monitor before"""
@ -49,45 +49,45 @@ def load_dats(filepath):
if data_type == "txt":
dict1 = add_dict(dict1, load_1D(file_list[i][0]))
else:
dict1 = add_dict(dict1, load_1D(file_list[i]))
dict1["scan"][i + 1]["params"] = {}
if data_type == "txt":
for x in range(len(col_names) - 1):
dict1["scan"][i + 1]["params"][col_names[x + 1]] = file_list[i][x + 1]
dict1["scan"][i + 1]["params"][col_names[x + 1]] = float(file_list[i][x + 1])
return dict1
def create_dataframe(dict1):
def create_dataframe(dict1, variables):
"""Creates pandas dataframe from the dictionary
:arg ccl like dictionary
:return pandas dataframe"""
# create dictionary to which we pull only wanted items before transforming it to pd.dataframe
pull_dict = {}
pull_dict["filenames"] = list()
for key in dict1["scan"][1]["params"]:
pull_dict[key] = list()
pull_dict["temperature"] = list()
pull_dict["mag_field"] = list()
for keys in variables:
for item in variables[keys]:
pull_dict[item] = list()
pull_dict["fit_area"] = list()
pull_dict["int_area"] = list()
pull_dict["om"] = list()
pull_dict["Counts"] = list()
for keys in pull_dict:
print(keys)
# populate the dict
for keys in dict1["scan"]:
if "file_of_origin" in dict1["scan"][keys]:
pull_dict["filenames"].append(dict1["scan"][keys]["file_of_origin"].split("/")[-1])
else:
pull_dict["filenames"].append(dict1["meta"]["original_filename"].split("/")[-1])
for key in dict1["scan"][keys]["params"]:
pull_dict[str(key)].append(float(dict1["scan"][keys]["params"][key]))
pull_dict["temperature"].append(dict1["scan"][keys]["temperature"])
pull_dict["mag_field"].append(dict1["scan"][keys]["mag_field"])
pull_dict["fit_area"].append(dict1["scan"][keys]["fit"]["fit_area"])
pull_dict["int_area"].append(dict1["scan"][keys]["fit"]["int_area"])
pull_dict["om"].append(dict1["scan"][keys]["om"])
pull_dict["Counts"].append(dict1["scan"][keys]["Counts"])
for key in variables:
for i in variables[key]:
pull_dict[i].append(_finditem(dict1["scan"][keys], i))
return pd.DataFrame(data=pull_dict)
@ -213,7 +213,8 @@ def save_table(data, filetype, name, path=None):
if filetype == "json":
data.to_json((path + name + ".json"))
def normalize(dict, key, monitor):
def normalize(scan, monitor):
"""Normalizes the measurement to monitor, checks if sigma exists, otherwise creates it
:arg dict : dictionary to from which to tkae the scan
:arg key : which scan to normalize from dict1
@ -221,15 +222,16 @@ def normalize(dict, key, monitor):
:return counts - normalized counts
:return sigma - normalized sigma"""
counts = np.array(dict["scan"][key]["Counts"])
sigma = np.sqrt(counts) if "sigma" not in dict["scan"][key] else dict["scan"][key]["sigma"]
monitor_ratio = monitor / dict["scan"][key]["monitor"]
counts = np.array(scan["Counts"])
sigma = np.sqrt(counts) if "sigma" not in scan else scan["sigma"]
monitor_ratio = monitor / scan["monitor"]
scaled_counts = counts * monitor_ratio
scaled_sigma = np.array(sigma) * monitor_ratio
return scaled_counts, scaled_sigma
def merge(dict1, dict2, scand_dict_result, keep=True, monitor=100000):
def merge(scan1, scan2, keep=True, monitor=100000):
"""merges the two tuples and sorts them, if om value is same, Counts value is average
averaging is propagated into sigma if dict1 == dict2, key[1] is deleted after merging
:arg dict1 : dictionary to which measurement will be merged
@ -240,62 +242,45 @@ def merge(dict1, dict2, scand_dict_result, keep=True, monitor=100000):
:arg monitor : final monitor after merging
note: dict1 and dict2 can be same dict
:return dict1 with merged scan"""
for keys in scand_dict_result:
for j in range(len(scand_dict_result[keys])):
first, second = scand_dict_result[keys][j][0], scand_dict_result[keys][j][1]
print(first, second)
if keep:
if dict1["scan"][first]["monitor"] == dict2["scan"][second]["monitor"]:
monitor = dict1["scan"][first]["monitor"]
# load om and Counts
x1, x2 = dict1["scan"][first]["om"], dict2["scan"][second]["om"]
cor_y1, y_err1 = normalize(dict1, first, monitor=monitor)
cor_y2, y_err2 = normalize(dict2, second, monitor=monitor)
# creates touples (om, Counts, sigma) for sorting and further processing
tuple_list = create_tuples(x1, cor_y1, y_err1) + create_tuples(x2, cor_y2, y_err2)
# Sort the list on om and add 0 0 0 tuple to the last position
sorted_t = sorted(tuple_list, key=lambda tup: tup[0])
sorted_t.append((0, 0, 0))
om, Counts, sigma = [], [], []
seen = list()
for i in range(len(sorted_t) - 1):
if sorted_t[i][0] not in seen:
if sorted_t[i][0] != sorted_t[i + 1][0]:
om = np.append(om, sorted_t[i][0])
Counts = np.append(Counts, sorted_t[i][1])
sigma = np.append(sigma, sorted_t[i][2])
else:
om = np.append(om, sorted_t[i][0])
counts1, counts2 = sorted_t[i][1], sorted_t[i + 1][1]
sigma1, sigma2 = sorted_t[i][2], sorted_t[i + 1][2]
count_err1 = u.ufloat(counts1, sigma1)
count_err2 = u.ufloat(counts2, sigma2)
avg = (count_err1 + count_err2) / 2
Counts = np.append(Counts, avg.n)
sigma = np.append(sigma, avg.s)
seen.append(sorted_t[i][0])
else:
continue
if keep:
if scan1["monitor"] == scan2["monitor"]:
monitor = scan1["monitor"]
if dict1 == dict2:
del dict1["scan"][second]
note = (
f"This measurement was merged with measurement {second} from "
f'file {dict2["meta"]["original_filename"]} \n'
)
if "notes" not in dict1["scan"][first]:
dict1["scan"][first]["notes"] = note
# load om and Counts
x1, x2 = scan1["om"], scan2["om"]
cor_y1, y_err1 = normalize(scan1, monitor=monitor)
cor_y2, y_err2 = normalize(scan2, monitor=monitor)
# creates touples (om, Counts, sigma) for sorting and further processing
tuple_list = create_tuples(x1, cor_y1, y_err1) + create_tuples(x2, cor_y2, y_err2)
# Sort the list on om and add 0 0 0 tuple to the last position
sorted_t = sorted(tuple_list, key=lambda tup: tup[0])
sorted_t.append((0, 0, 0))
om, Counts, sigma = [], [], []
seen = list()
for i in range(len(sorted_t) - 1):
if sorted_t[i][0] not in seen:
if sorted_t[i][0] != sorted_t[i + 1][0]:
om = np.append(om, sorted_t[i][0])
Counts = np.append(Counts, sorted_t[i][1])
sigma = np.append(sigma, sorted_t[i][2])
else:
dict1["scan"][first]["notes"] += note
dict1["scan"][first]["om"] = om
dict1["scan"][first]["Counts"] = Counts
dict1["scan"][first]["sigma"] = sigma
dict1["scan"][first]["monitor"] = monitor
print("merging done")
return dict1
om = np.append(om, sorted_t[i][0])
counts1, counts2 = sorted_t[i][1], sorted_t[i + 1][1]
sigma1, sigma2 = sorted_t[i][2], sorted_t[i + 1][2]
count_err1 = u.ufloat(counts1, sigma1)
count_err2 = u.ufloat(counts2, sigma2)
avg = (count_err1 + count_err2) / 2
Counts = np.append(Counts, avg.n)
sigma = np.append(sigma, avg.s)
seen.append(sorted_t[i][0])
else:
continue
scan1["om"] = om
scan1["Counts"] = Counts
scan1["sigma"] = sigma
scan1["monitor"] = monitor
print("merging done")
def add_dict(dict1, dict2):
@ -306,9 +291,13 @@ def add_dict(dict1, dict2):
:return dict1 : combined dictionary
Note: dict1 must be made from ccl, otherwise we would have to change the structure of loaded
dat file"""
if dict1["meta"]["zebra_mode"] != dict2["meta"]["zebra_mode"]:
print("You are trying to add scans measured with different zebra modes")
return
try:
if dict1["meta"]["zebra_mode"] != dict2["meta"]["zebra_mode"]:
print("You are trying to add scans measured with different zebra modes")
return
# this is for the qscan case
except KeyError:
print("Zebra mode not specified")
max_measurement_dict1 = max([keys for keys in dict1["scan"]])
new_filenames = np.arange(
max_measurement_dict1 + 1, max_measurement_dict1 + 1 + len(dict2["scan"])
@ -371,6 +360,9 @@ def scan_dict(dict, precision=0.5):
itup.append(abs(abs(dict["scan"][i][k]) - abs(dict["scan"][j][k])))
if all(i <= precision for i in itup):
print(itup)
print([dict["scan"][i][k] for k in angles])
print([dict["scan"][j][k] for k in angles])
if str([np.around(dict["scan"][i][k], 0) for k in angles]) not in d:
d[str([np.around(dict["scan"][i][k], 0) for k in angles])] = list()
d[str([np.around(dict["scan"][i][k], 0) for k in angles])].append((i, j))
@ -382,4 +374,115 @@ def scan_dict(dict, precision=0.5):
else:
continue
return d
def _finditem(obj, key):
if key in obj:
return obj[key]
for k, v in obj.items():
if isinstance(v, dict):
item = _finditem(v, key)
if item is not None:
return item
def most_common(lst):
return max(set(lst), key=lst.count)
def variables(dictionary):
"""Funcrion to guess what variables will be used in the param study
i call pripary variable the one the array like variable, usually omega
and secondary the slicing variable, different for each scan,for example temperature"""
# find all variables that are in all scans
stdev_precision = 0.05
all_vars = list()
for keys in dictionary["scan"]:
all_vars.append([key for key in dictionary["scan"][keys] if key != "params"])
if dictionary["scan"][keys]["params"]:
all_vars.append(key for key in dictionary["scan"][keys]["params"])
all_vars = [i for sublist in all_vars for i in sublist]
# get the ones that are in all scans
b = collections.Counter(all_vars)
inall = [key for key in b if b[key] == len(dictionary["scan"])]
# delete those that are obviously wrong
wrong = [
"NP",
"Counts",
"Monitor1",
"Monitor2",
"Monitor3",
"h_index",
"l_index",
"k_index",
"number_of_measurements",
"monitor",
"Time",
"omega_angle",
"twotheta_angle",
"chi_angle",
"phi_angle",
"nu_angle",
]
inall_red = [i for i in inall if i not in wrong]
# check for primary variable, needs to be list, we dont suspect the
# primary variable be as a parameter (be in scan[params])
primary_candidates = list()
for key in dictionary["scan"]:
for i in inall_red:
if isinstance(_finditem(dictionary["scan"][key], i), list):
if np.std(_finditem(dictionary["scan"][key], i)) > stdev_precision:
primary_candidates.append(i)
# check which of the primary are in every scan
primary_candidates = collections.Counter(primary_candidates)
second_round_primary_candidates = [
key for key in primary_candidates if primary_candidates[key] == len(dictionary["scan"])
]
if len(second_round_primary_candidates) == 1:
print("We've got a primary winner!", second_round_primary_candidates)
else:
print("Still not sure with primary:(", second_round_primary_candidates)
# check for secondary variable, we suspect a float\int or not changing array
# we dont need to check for primary ones
secondary_candidates = [i for i in inall_red if i not in second_round_primary_candidates]
# print("secondary candidates", secondary_candidates)
# select arrays and floats and ints
second_round_secondary_candidates = list()
for key in dictionary["scan"]:
for i in secondary_candidates:
if isinstance(_finditem(dictionary["scan"][key], i), float):
second_round_secondary_candidates.append(i)
elif isinstance(_finditem(dictionary["scan"][key], i), int):
second_round_secondary_candidates.append(i)
elif isinstance(_finditem(dictionary["scan"][key], i), list):
if np.std(_finditem(dictionary["scan"][key], i)) < stdev_precision:
second_round_secondary_candidates.append(i)
second_round_secondary_candidates = collections.Counter(second_round_secondary_candidates)
second_round_secondary_candidates = [
key
for key in second_round_secondary_candidates
if second_round_secondary_candidates[key] == len(dictionary["scan"])
]
# print("secondary candidates after second round", second_round_secondary_candidates)
# now we check if they vary between the scans
third_round_sec_candidates = list()
for i in second_round_secondary_candidates:
check_array = list()
for keys in dictionary["scan"]:
check_array.append(np.average(_finditem(dictionary["scan"][keys], i)))
# print(i, check_array, np.std(check_array))
if np.std(check_array) > stdev_precision:
third_round_sec_candidates.append(i)
if len(third_round_sec_candidates) == 1:
print("We've got a secondary winner!", third_round_sec_candidates)
else:
print("Still not sure with secondary :(", third_round_sec_candidates)
return {"primary": second_round_primary_candidates, "secondary": third_round_sec_candidates}