Update param_study_moduls.py
Updated the create_dataframe and added function called variables, which tries to decide which variables to plot in parametric study and q scans. Works good for primary variable (usually om), and reduces the secondary (slice variable, temperature, mag.field,...) variables to a few candidates from which one has to be picked. In one set for param study, it identified all parameters correctly, in q scan, the temperature varied as well as H index, so technically both could be used, but only one makes sense and that will have to be picked by user.
This commit is contained in:
parent
0856705024
commit
dbc643aba9
@ -7,10 +7,10 @@ import pandas as pd
|
||||
import scipy.io as sio
|
||||
import uncertainties as u
|
||||
from mpl_toolkits.mplot3d import Axes3D # dont delete, otherwise waterfall wont work
|
||||
import collections
|
||||
|
||||
from .ccl_io import load_1D
|
||||
|
||||
|
||||
def create_tuples(x, y, y_err):
|
||||
"""creates tuples for sorting and merginng of the data
|
||||
Counts need to be normalized to monitor before"""
|
||||
@ -49,45 +49,45 @@ def load_dats(filepath):
|
||||
if data_type == "txt":
|
||||
dict1 = add_dict(dict1, load_1D(file_list[i][0]))
|
||||
else:
|
||||
|
||||
dict1 = add_dict(dict1, load_1D(file_list[i]))
|
||||
dict1["scan"][i + 1]["params"] = {}
|
||||
if data_type == "txt":
|
||||
for x in range(len(col_names) - 1):
|
||||
dict1["scan"][i + 1]["params"][col_names[x + 1]] = file_list[i][x + 1]
|
||||
|
||||
dict1["scan"][i + 1]["params"][col_names[x + 1]] = float(file_list[i][x + 1])
|
||||
return dict1
|
||||
|
||||
|
||||
def create_dataframe(dict1):
|
||||
def create_dataframe(dict1, variables):
|
||||
"""Creates pandas dataframe from the dictionary
|
||||
:arg ccl like dictionary
|
||||
:return pandas dataframe"""
|
||||
# create dictionary to which we pull only wanted items before transforming it to pd.dataframe
|
||||
pull_dict = {}
|
||||
pull_dict["filenames"] = list()
|
||||
for key in dict1["scan"][1]["params"]:
|
||||
pull_dict[key] = list()
|
||||
pull_dict["temperature"] = list()
|
||||
pull_dict["mag_field"] = list()
|
||||
for keys in variables:
|
||||
for item in variables[keys]:
|
||||
pull_dict[item] = list()
|
||||
pull_dict["fit_area"] = list()
|
||||
pull_dict["int_area"] = list()
|
||||
pull_dict["om"] = list()
|
||||
pull_dict["Counts"] = list()
|
||||
|
||||
for keys in pull_dict:
|
||||
print(keys)
|
||||
|
||||
# populate the dict
|
||||
for keys in dict1["scan"]:
|
||||
if "file_of_origin" in dict1["scan"][keys]:
|
||||
pull_dict["filenames"].append(dict1["scan"][keys]["file_of_origin"].split("/")[-1])
|
||||
else:
|
||||
pull_dict["filenames"].append(dict1["meta"]["original_filename"].split("/")[-1])
|
||||
for key in dict1["scan"][keys]["params"]:
|
||||
pull_dict[str(key)].append(float(dict1["scan"][keys]["params"][key]))
|
||||
pull_dict["temperature"].append(dict1["scan"][keys]["temperature"])
|
||||
pull_dict["mag_field"].append(dict1["scan"][keys]["mag_field"])
|
||||
|
||||
pull_dict["fit_area"].append(dict1["scan"][keys]["fit"]["fit_area"])
|
||||
pull_dict["int_area"].append(dict1["scan"][keys]["fit"]["int_area"])
|
||||
pull_dict["om"].append(dict1["scan"][keys]["om"])
|
||||
pull_dict["Counts"].append(dict1["scan"][keys]["Counts"])
|
||||
for key in variables:
|
||||
for i in variables[key]:
|
||||
pull_dict[i].append(_finditem(dict1["scan"][keys], i))
|
||||
|
||||
return pd.DataFrame(data=pull_dict)
|
||||
|
||||
@ -213,7 +213,8 @@ def save_table(data, filetype, name, path=None):
|
||||
if filetype == "json":
|
||||
data.to_json((path + name + ".json"))
|
||||
|
||||
def normalize(dict, key, monitor):
|
||||
|
||||
def normalize(scan, monitor):
|
||||
"""Normalizes the measurement to monitor, checks if sigma exists, otherwise creates it
|
||||
:arg dict : dictionary to from which to tkae the scan
|
||||
:arg key : which scan to normalize from dict1
|
||||
@ -221,15 +222,16 @@ def normalize(dict, key, monitor):
|
||||
:return counts - normalized counts
|
||||
:return sigma - normalized sigma"""
|
||||
|
||||
counts = np.array(dict["scan"][key]["Counts"])
|
||||
sigma = np.sqrt(counts) if "sigma" not in dict["scan"][key] else dict["scan"][key]["sigma"]
|
||||
monitor_ratio = monitor / dict["scan"][key]["monitor"]
|
||||
counts = np.array(scan["Counts"])
|
||||
sigma = np.sqrt(counts) if "sigma" not in scan else scan["sigma"]
|
||||
monitor_ratio = monitor / scan["monitor"]
|
||||
scaled_counts = counts * monitor_ratio
|
||||
scaled_sigma = np.array(sigma) * monitor_ratio
|
||||
|
||||
return scaled_counts, scaled_sigma
|
||||
|
||||
def merge(dict1, dict2, scand_dict_result, keep=True, monitor=100000):
|
||||
|
||||
def merge(scan1, scan2, keep=True, monitor=100000):
|
||||
"""merges the two tuples and sorts them, if om value is same, Counts value is average
|
||||
averaging is propagated into sigma if dict1 == dict2, key[1] is deleted after merging
|
||||
:arg dict1 : dictionary to which measurement will be merged
|
||||
@ -240,62 +242,45 @@ def merge(dict1, dict2, scand_dict_result, keep=True, monitor=100000):
|
||||
:arg monitor : final monitor after merging
|
||||
note: dict1 and dict2 can be same dict
|
||||
:return dict1 with merged scan"""
|
||||
for keys in scand_dict_result:
|
||||
for j in range(len(scand_dict_result[keys])):
|
||||
first, second = scand_dict_result[keys][j][0], scand_dict_result[keys][j][1]
|
||||
print(first, second)
|
||||
if keep:
|
||||
if dict1["scan"][first]["monitor"] == dict2["scan"][second]["monitor"]:
|
||||
monitor = dict1["scan"][first]["monitor"]
|
||||
|
||||
# load om and Counts
|
||||
x1, x2 = dict1["scan"][first]["om"], dict2["scan"][second]["om"]
|
||||
cor_y1, y_err1 = normalize(dict1, first, monitor=monitor)
|
||||
cor_y2, y_err2 = normalize(dict2, second, monitor=monitor)
|
||||
# creates touples (om, Counts, sigma) for sorting and further processing
|
||||
tuple_list = create_tuples(x1, cor_y1, y_err1) + create_tuples(x2, cor_y2, y_err2)
|
||||
# Sort the list on om and add 0 0 0 tuple to the last position
|
||||
sorted_t = sorted(tuple_list, key=lambda tup: tup[0])
|
||||
sorted_t.append((0, 0, 0))
|
||||
om, Counts, sigma = [], [], []
|
||||
seen = list()
|
||||
for i in range(len(sorted_t) - 1):
|
||||
if sorted_t[i][0] not in seen:
|
||||
if sorted_t[i][0] != sorted_t[i + 1][0]:
|
||||
om = np.append(om, sorted_t[i][0])
|
||||
Counts = np.append(Counts, sorted_t[i][1])
|
||||
sigma = np.append(sigma, sorted_t[i][2])
|
||||
else:
|
||||
om = np.append(om, sorted_t[i][0])
|
||||
counts1, counts2 = sorted_t[i][1], sorted_t[i + 1][1]
|
||||
sigma1, sigma2 = sorted_t[i][2], sorted_t[i + 1][2]
|
||||
count_err1 = u.ufloat(counts1, sigma1)
|
||||
count_err2 = u.ufloat(counts2, sigma2)
|
||||
avg = (count_err1 + count_err2) / 2
|
||||
Counts = np.append(Counts, avg.n)
|
||||
sigma = np.append(sigma, avg.s)
|
||||
seen.append(sorted_t[i][0])
|
||||
else:
|
||||
continue
|
||||
if keep:
|
||||
if scan1["monitor"] == scan2["monitor"]:
|
||||
monitor = scan1["monitor"]
|
||||
|
||||
if dict1 == dict2:
|
||||
del dict1["scan"][second]
|
||||
|
||||
note = (
|
||||
f"This measurement was merged with measurement {second} from "
|
||||
f'file {dict2["meta"]["original_filename"]} \n'
|
||||
)
|
||||
if "notes" not in dict1["scan"][first]:
|
||||
dict1["scan"][first]["notes"] = note
|
||||
# load om and Counts
|
||||
x1, x2 = scan1["om"], scan2["om"]
|
||||
cor_y1, y_err1 = normalize(scan1, monitor=monitor)
|
||||
cor_y2, y_err2 = normalize(scan2, monitor=monitor)
|
||||
# creates touples (om, Counts, sigma) for sorting and further processing
|
||||
tuple_list = create_tuples(x1, cor_y1, y_err1) + create_tuples(x2, cor_y2, y_err2)
|
||||
# Sort the list on om and add 0 0 0 tuple to the last position
|
||||
sorted_t = sorted(tuple_list, key=lambda tup: tup[0])
|
||||
sorted_t.append((0, 0, 0))
|
||||
om, Counts, sigma = [], [], []
|
||||
seen = list()
|
||||
for i in range(len(sorted_t) - 1):
|
||||
if sorted_t[i][0] not in seen:
|
||||
if sorted_t[i][0] != sorted_t[i + 1][0]:
|
||||
om = np.append(om, sorted_t[i][0])
|
||||
Counts = np.append(Counts, sorted_t[i][1])
|
||||
sigma = np.append(sigma, sorted_t[i][2])
|
||||
else:
|
||||
dict1["scan"][first]["notes"] += note
|
||||
|
||||
dict1["scan"][first]["om"] = om
|
||||
dict1["scan"][first]["Counts"] = Counts
|
||||
dict1["scan"][first]["sigma"] = sigma
|
||||
dict1["scan"][first]["monitor"] = monitor
|
||||
print("merging done")
|
||||
return dict1
|
||||
om = np.append(om, sorted_t[i][0])
|
||||
counts1, counts2 = sorted_t[i][1], sorted_t[i + 1][1]
|
||||
sigma1, sigma2 = sorted_t[i][2], sorted_t[i + 1][2]
|
||||
count_err1 = u.ufloat(counts1, sigma1)
|
||||
count_err2 = u.ufloat(counts2, sigma2)
|
||||
avg = (count_err1 + count_err2) / 2
|
||||
Counts = np.append(Counts, avg.n)
|
||||
sigma = np.append(sigma, avg.s)
|
||||
seen.append(sorted_t[i][0])
|
||||
else:
|
||||
continue
|
||||
scan1["om"] = om
|
||||
scan1["Counts"] = Counts
|
||||
scan1["sigma"] = sigma
|
||||
scan1["monitor"] = monitor
|
||||
print("merging done")
|
||||
|
||||
|
||||
def add_dict(dict1, dict2):
|
||||
@ -306,9 +291,13 @@ def add_dict(dict1, dict2):
|
||||
:return dict1 : combined dictionary
|
||||
Note: dict1 must be made from ccl, otherwise we would have to change the structure of loaded
|
||||
dat file"""
|
||||
if dict1["meta"]["zebra_mode"] != dict2["meta"]["zebra_mode"]:
|
||||
print("You are trying to add scans measured with different zebra modes")
|
||||
return
|
||||
try:
|
||||
if dict1["meta"]["zebra_mode"] != dict2["meta"]["zebra_mode"]:
|
||||
print("You are trying to add scans measured with different zebra modes")
|
||||
return
|
||||
# this is for the qscan case
|
||||
except KeyError:
|
||||
print("Zebra mode not specified")
|
||||
max_measurement_dict1 = max([keys for keys in dict1["scan"]])
|
||||
new_filenames = np.arange(
|
||||
max_measurement_dict1 + 1, max_measurement_dict1 + 1 + len(dict2["scan"])
|
||||
@ -371,6 +360,9 @@ def scan_dict(dict, precision=0.5):
|
||||
itup.append(abs(abs(dict["scan"][i][k]) - abs(dict["scan"][j][k])))
|
||||
|
||||
if all(i <= precision for i in itup):
|
||||
print(itup)
|
||||
print([dict["scan"][i][k] for k in angles])
|
||||
print([dict["scan"][j][k] for k in angles])
|
||||
if str([np.around(dict["scan"][i][k], 0) for k in angles]) not in d:
|
||||
d[str([np.around(dict["scan"][i][k], 0) for k in angles])] = list()
|
||||
d[str([np.around(dict["scan"][i][k], 0) for k in angles])].append((i, j))
|
||||
@ -382,4 +374,115 @@ def scan_dict(dict, precision=0.5):
|
||||
|
||||
else:
|
||||
continue
|
||||
|
||||
return d
|
||||
|
||||
|
||||
def _finditem(obj, key):
|
||||
if key in obj:
|
||||
return obj[key]
|
||||
for k, v in obj.items():
|
||||
if isinstance(v, dict):
|
||||
item = _finditem(v, key)
|
||||
if item is not None:
|
||||
return item
|
||||
|
||||
|
||||
def most_common(lst):
|
||||
return max(set(lst), key=lst.count)
|
||||
|
||||
|
||||
def variables(dictionary):
|
||||
"""Funcrion to guess what variables will be used in the param study
|
||||
i call pripary variable the one the array like variable, usually omega
|
||||
and secondary the slicing variable, different for each scan,for example temperature"""
|
||||
# find all variables that are in all scans
|
||||
stdev_precision = 0.05
|
||||
all_vars = list()
|
||||
for keys in dictionary["scan"]:
|
||||
all_vars.append([key for key in dictionary["scan"][keys] if key != "params"])
|
||||
if dictionary["scan"][keys]["params"]:
|
||||
all_vars.append(key for key in dictionary["scan"][keys]["params"])
|
||||
|
||||
all_vars = [i for sublist in all_vars for i in sublist]
|
||||
# get the ones that are in all scans
|
||||
b = collections.Counter(all_vars)
|
||||
inall = [key for key in b if b[key] == len(dictionary["scan"])]
|
||||
# delete those that are obviously wrong
|
||||
wrong = [
|
||||
"NP",
|
||||
"Counts",
|
||||
"Monitor1",
|
||||
"Monitor2",
|
||||
"Monitor3",
|
||||
"h_index",
|
||||
"l_index",
|
||||
"k_index",
|
||||
"number_of_measurements",
|
||||
"monitor",
|
||||
"Time",
|
||||
"omega_angle",
|
||||
"twotheta_angle",
|
||||
"chi_angle",
|
||||
"phi_angle",
|
||||
"nu_angle",
|
||||
]
|
||||
inall_red = [i for i in inall if i not in wrong]
|
||||
|
||||
# check for primary variable, needs to be list, we dont suspect the
|
||||
# primary variable be as a parameter (be in scan[params])
|
||||
primary_candidates = list()
|
||||
for key in dictionary["scan"]:
|
||||
for i in inall_red:
|
||||
if isinstance(_finditem(dictionary["scan"][key], i), list):
|
||||
if np.std(_finditem(dictionary["scan"][key], i)) > stdev_precision:
|
||||
primary_candidates.append(i)
|
||||
# check which of the primary are in every scan
|
||||
primary_candidates = collections.Counter(primary_candidates)
|
||||
second_round_primary_candidates = [
|
||||
key for key in primary_candidates if primary_candidates[key] == len(dictionary["scan"])
|
||||
]
|
||||
|
||||
if len(second_round_primary_candidates) == 1:
|
||||
print("We've got a primary winner!", second_round_primary_candidates)
|
||||
else:
|
||||
print("Still not sure with primary:(", second_round_primary_candidates)
|
||||
|
||||
# check for secondary variable, we suspect a float\int or not changing array
|
||||
# we dont need to check for primary ones
|
||||
secondary_candidates = [i for i in inall_red if i not in second_round_primary_candidates]
|
||||
# print("secondary candidates", secondary_candidates)
|
||||
# select arrays and floats and ints
|
||||
second_round_secondary_candidates = list()
|
||||
for key in dictionary["scan"]:
|
||||
for i in secondary_candidates:
|
||||
if isinstance(_finditem(dictionary["scan"][key], i), float):
|
||||
second_round_secondary_candidates.append(i)
|
||||
elif isinstance(_finditem(dictionary["scan"][key], i), int):
|
||||
second_round_secondary_candidates.append(i)
|
||||
elif isinstance(_finditem(dictionary["scan"][key], i), list):
|
||||
if np.std(_finditem(dictionary["scan"][key], i)) < stdev_precision:
|
||||
second_round_secondary_candidates.append(i)
|
||||
|
||||
second_round_secondary_candidates = collections.Counter(second_round_secondary_candidates)
|
||||
second_round_secondary_candidates = [
|
||||
key
|
||||
for key in second_round_secondary_candidates
|
||||
if second_round_secondary_candidates[key] == len(dictionary["scan"])
|
||||
]
|
||||
# print("secondary candidates after second round", second_round_secondary_candidates)
|
||||
# now we check if they vary between the scans
|
||||
third_round_sec_candidates = list()
|
||||
for i in second_round_secondary_candidates:
|
||||
check_array = list()
|
||||
for keys in dictionary["scan"]:
|
||||
check_array.append(np.average(_finditem(dictionary["scan"][keys], i)))
|
||||
# print(i, check_array, np.std(check_array))
|
||||
if np.std(check_array) > stdev_precision:
|
||||
third_round_sec_candidates.append(i)
|
||||
if len(third_round_sec_candidates) == 1:
|
||||
print("We've got a secondary winner!", third_round_sec_candidates)
|
||||
else:
|
||||
print("Still not sure with secondary :(", third_round_sec_candidates)
|
||||
|
||||
return {"primary": second_round_primary_candidates, "secondary": third_round_sec_candidates}
|
||||
|
Loading…
x
Reference in New Issue
Block a user