Reuse fit_event in panel_hdf_viewer
This commit is contained in:
parent
813270d6f8
commit
c9922bb0cb
@ -1,6 +1,5 @@
|
|||||||
import base64
|
import base64
|
||||||
import io
|
import io
|
||||||
import math
|
|
||||||
import os
|
import os
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -41,7 +40,6 @@ from bokeh.models import (
|
|||||||
WheelZoomTool,
|
WheelZoomTool,
|
||||||
)
|
)
|
||||||
from bokeh.palettes import Cividis256, Greys256, Plasma256 # pylint: disable=E0611
|
from bokeh.palettes import Cividis256, Greys256, Plasma256 # pylint: disable=E0611
|
||||||
from scipy.optimize import curve_fit
|
|
||||||
|
|
||||||
import pyzebra
|
import pyzebra
|
||||||
|
|
||||||
@ -656,8 +654,15 @@ def create():
|
|||||||
)
|
)
|
||||||
|
|
||||||
def add_event_button_callback():
|
def add_event_button_callback():
|
||||||
p0 = [1.0, 0.0, 1.0]
|
pyzebra.fit_event(
|
||||||
maxfev = 100000
|
det_data,
|
||||||
|
int(np.floor(frame_range.start)),
|
||||||
|
int(np.ceil(frame_range.end)),
|
||||||
|
int(np.floor(det_y_range.start)),
|
||||||
|
int(np.ceil(det_y_range.end)),
|
||||||
|
int(np.floor(det_x_range.start)),
|
||||||
|
int(np.ceil(det_x_range.end)),
|
||||||
|
)
|
||||||
|
|
||||||
wave = det_data["wave"]
|
wave = det_data["wave"]
|
||||||
ddist = det_data["ddist"]
|
ddist = det_data["ddist"]
|
||||||
@ -672,25 +677,12 @@ def create():
|
|||||||
scan_motor = det_data["scan_motor"]
|
scan_motor = det_data["scan_motor"]
|
||||||
var_angle = det_data[scan_motor]
|
var_angle = det_data[scan_motor]
|
||||||
|
|
||||||
x0 = int(np.floor(det_x_range.start))
|
snr_cnts = det_data["fit"]["snr"]
|
||||||
xN = int(np.ceil(det_x_range.end))
|
frC = det_data["fit"]["frame"]
|
||||||
y0 = int(np.floor(det_y_range.start))
|
|
||||||
yN = int(np.ceil(det_y_range.end))
|
|
||||||
fr0 = int(np.floor(frame_range.start))
|
|
||||||
frN = int(np.ceil(frame_range.end))
|
|
||||||
data_roi = det_data["data"][fr0:frN, y0:yN, x0:xN]
|
|
||||||
|
|
||||||
cnts = np.sum(data_roi, axis=(1, 2))
|
var_F = var_angle[int(np.floor(frC))]
|
||||||
coeff, _ = curve_fit(gauss, range(len(cnts)), cnts, p0=p0, maxfev=maxfev)
|
var_C = var_angle[int(np.ceil(frC))]
|
||||||
|
frStep = frC - np.floor(frC)
|
||||||
m = cnts.mean()
|
|
||||||
sd = cnts.std()
|
|
||||||
snr_cnts = np.where(sd == 0, 0, m / sd)
|
|
||||||
|
|
||||||
frC = fr0 + coeff[1]
|
|
||||||
var_F = var_angle[math.floor(frC)]
|
|
||||||
var_C = var_angle[math.ceil(frC)]
|
|
||||||
frStep = frC - math.floor(frC)
|
|
||||||
var_step = var_C - var_F
|
var_step = var_C - var_F
|
||||||
var_p = var_F + var_step * frStep
|
var_p = var_F + var_step * frStep
|
||||||
|
|
||||||
@ -705,15 +697,9 @@ def create():
|
|||||||
elif scan_motor == "phi":
|
elif scan_motor == "phi":
|
||||||
phi = var_p
|
phi = var_p
|
||||||
|
|
||||||
intensity = coeff[1] * abs(coeff[2] * var_step) * math.sqrt(2) * math.sqrt(np.pi)
|
intensity = det_data["fit"]["intensity"]
|
||||||
|
x_pos = det_data["fit"]["x_pos"]
|
||||||
projX = np.sum(data_roi, axis=(0, 1))
|
y_pos = det_data["fit"]["y_pos"]
|
||||||
coeff, _ = curve_fit(gauss, range(len(projX)), projX, p0=p0, maxfev=maxfev)
|
|
||||||
x_pos = x0 + coeff[1]
|
|
||||||
|
|
||||||
projY = np.sum(data_roi, axis=(0, 2))
|
|
||||||
coeff, _ = curve_fit(gauss, range(len(projY)), projY, p0=p0, maxfev=maxfev)
|
|
||||||
y_pos = y0 + coeff[1]
|
|
||||||
|
|
||||||
events_data["wave"].append(wave)
|
events_data["wave"].append(wave)
|
||||||
events_data["ddist"].append(ddist)
|
events_data["ddist"].append(ddist)
|
||||||
@ -795,17 +781,6 @@ def create():
|
|||||||
return Panel(child=tab_layout, title="hdf viewer")
|
return Panel(child=tab_layout, title="hdf viewer")
|
||||||
|
|
||||||
|
|
||||||
def gauss(x, *p):
|
|
||||||
"""Defines Gaussian function
|
|
||||||
Args:
|
|
||||||
A - amplitude, mu - position of the center, sigma - width
|
|
||||||
Returns:
|
|
||||||
Gaussian function
|
|
||||||
"""
|
|
||||||
A, mu, sigma = p
|
|
||||||
return A * np.exp(-((x - mu) ** 2) / (2.0 * sigma ** 2))
|
|
||||||
|
|
||||||
|
|
||||||
def calculate_hkl(det_data, index):
|
def calculate_hkl(det_data, index):
|
||||||
h = np.empty(shape=(IMAGE_H, IMAGE_W))
|
h = np.empty(shape=(IMAGE_H, IMAGE_W))
|
||||||
k = np.empty(shape=(IMAGE_H, IMAGE_W))
|
k = np.empty(shape=(IMAGE_H, IMAGE_W))
|
||||||
|
@ -257,6 +257,10 @@ def fit_event(scan, fr_from, fr_to, y_from, y_to, x_from, x_to):
|
|||||||
frC = result.params["center"].value
|
frC = result.params["center"].value
|
||||||
intensity = result.params["height"].value
|
intensity = result.params["height"].value
|
||||||
|
|
||||||
|
counts_std = counts_per_fr.std()
|
||||||
|
counts_mean = counts_per_fr.mean()
|
||||||
|
snr = 0 if counts_std == 0 else counts_mean / counts_std
|
||||||
|
|
||||||
model = Gaussian2dModel()
|
model = Gaussian2dModel()
|
||||||
xs, ys = np.meshgrid(np.arange(x_from, x_to), np.arange(y_from, y_to))
|
xs, ys = np.meshgrid(np.arange(x_from, x_to), np.arange(y_from, y_to))
|
||||||
xs = xs.flatten()
|
xs = xs.flatten()
|
||||||
@ -267,4 +271,4 @@ def fit_event(scan, fr_from, fr_to, y_from, y_to, x_from, x_to):
|
|||||||
xC = result.params["centerx"].value
|
xC = result.params["centerx"].value
|
||||||
yC = result.params["centery"].value
|
yC = result.params["centery"].value
|
||||||
|
|
||||||
scan["fit"] = {"frame": frC, "x_pos": xC, "y_pos": yC, "intensity": intensity}
|
scan["fit"] = {"frame": frC, "x_pos": xC, "y_pos": yC, "intensity": intensity, "snr": snr}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user