@@ -29,6 +29,7 @@ def normalize_dataset(dataset, monitor=100_000):
|
||||
for scan in dataset:
|
||||
monitor_ratio = monitor / scan["monitor"]
|
||||
scan["counts"] *= monitor_ratio
|
||||
scan["counts_err"] *= monitor_ratio
|
||||
scan["monitor"] = monitor
|
||||
|
||||
|
||||
@@ -83,6 +84,7 @@ def merge_scans(scan_into, scan_from):
|
||||
if "init_omega" not in scan_into:
|
||||
scan_into["init_omega"] = scan_into["omega"]
|
||||
scan_into["init_counts"] = scan_into["counts"]
|
||||
scan_into["init_counts_err"] = scan_into["counts_err"]
|
||||
|
||||
if "merged_scans" not in scan_into:
|
||||
scan_into["merged_scans"] = []
|
||||
@@ -93,15 +95,20 @@ def merge_scans(scan_into, scan_from):
|
||||
and np.max(np.abs(scan_into["omega"] - scan_from["omega"])) < 0.0005
|
||||
):
|
||||
scan_into["counts"] = (scan_into["counts"] + scan_from["counts"]) / 2
|
||||
scan_into["counts_err"] = np.sqrt(
|
||||
scan_into["counts_err"] ** 2 + scan_from["counts_err"] ** 2
|
||||
)
|
||||
|
||||
else:
|
||||
omega = np.concatenate((scan_into["omega"], scan_from["omega"]))
|
||||
counts = np.concatenate((scan_into["counts"], scan_from["counts"]))
|
||||
counts_err = np.concatenate((scan_into["counts_err"], scan_from["counts_err"]))
|
||||
|
||||
index = np.argsort(omega)
|
||||
|
||||
scan_into["omega"] = omega[index]
|
||||
scan_into["counts"] = counts[index]
|
||||
scan_into["counts_err"] = counts_err[index]
|
||||
|
||||
scan_from["active"] = False
|
||||
|
||||
@@ -114,8 +121,10 @@ def restore_scan(scan):
|
||||
if "init_omega" in scan:
|
||||
scan["omega"] = scan["init_omega"]
|
||||
scan["counts"] = scan["init_counts"]
|
||||
scan["counts_err"] = scan["init_counts_err"]
|
||||
del scan["init_omega"]
|
||||
del scan["init_counts"]
|
||||
del scan["init_counts_err"]
|
||||
|
||||
if "merged_scans" in scan:
|
||||
for merged_scan in scan["merged_scans"]:
|
||||
@@ -130,11 +139,13 @@ def fit_scan(scan, model_dict, fit_from=None, fit_to=None):
|
||||
fit_to = np.inf
|
||||
|
||||
y_fit = scan["counts"]
|
||||
y_err = scan["counts_err"]
|
||||
x_fit = scan[scan["scan_motor"]]
|
||||
|
||||
# apply fitting range
|
||||
fit_ind = (fit_from <= x_fit) & (x_fit <= fit_to)
|
||||
y_fit = y_fit[fit_ind]
|
||||
y_err = y_err[fit_ind]
|
||||
x_fit = x_fit[fit_ind]
|
||||
|
||||
model = None
|
||||
@@ -182,7 +193,7 @@ def fit_scan(scan, model_dict, fit_from=None, fit_to=None):
|
||||
else:
|
||||
model += _model
|
||||
|
||||
weights = [1 / np.sqrt(val) if val != 0 else 1 for val in y_fit]
|
||||
weights = [1 / y_err if y_err != 0 else 1 for y_err in y_err]
|
||||
scan["fit"] = model.fit(y_fit, x=x_fit, weights=weights)
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user