Update fit2.py
Added uncertainty propagation to the numerical integration and weighted fit. Case for 'no peak' scenario also added. Parameter export_fit in meas["fit"] added which is decides if fitted area or numerically integrated area will be saved in comm/incomm files.
This commit is contained in:
parent
b0f692a02c
commit
bcb4ef9849
260
pyzebra/fit2.py
260
pyzebra/fit2.py
@ -1,21 +1,37 @@
|
||||
import numpy as np
|
||||
from lmfit import Model, Parameters
|
||||
from scipy import integrate
|
||||
from scipy.integrate import simps
|
||||
|
||||
import uncertainties as u
|
||||
|
||||
|
||||
def find_nearest(array, value):
|
||||
# find nearest value and return index
|
||||
array = np.asarray(array)
|
||||
idx = (np.abs(array - value)).argmin()
|
||||
return idx
|
||||
|
||||
|
||||
def create_uncertanities(y, y_err):
|
||||
# create array with uncertanities for error propagation
|
||||
combined = np.array([])
|
||||
for i in range(len(y)):
|
||||
part = u.ufloat(y[i], y_err[i])
|
||||
combined = np.append(combined, part)
|
||||
return combined
|
||||
|
||||
|
||||
def fitccl(
|
||||
data, keys, guess, vary, constraints_min, constraints_max, numfit_min=None, numfit_max=None
|
||||
data,
|
||||
keys,
|
||||
guess,
|
||||
vary,
|
||||
constraints_min,
|
||||
constraints_max,
|
||||
numfit_min=None,
|
||||
numfit_max=None,
|
||||
):
|
||||
"""Made for fitting of ccl date where 1 peak is expected. Allows for combination of gaussian, lorentzian and linear model combination
|
||||
|
||||
|
||||
"""Made for fitting of ccl date where 1 peak is expected. Allows for combination of gaussian and linear model combination
|
||||
:param data: dictionary after peak fining
|
||||
:param keys: name of the measurement in the data dict (i.e. M123)
|
||||
:param guess: initial guess for the fitting, if none, some values are added automatically in order (see below)
|
||||
@ -24,133 +40,185 @@ def fitccl(
|
||||
:param numfit_max: maximal value on x axis for numerical integration - if none is centre of gaussian plus 3 sigma
|
||||
:param constraints_min: min constranits value for fit
|
||||
:param constraints_max: max constranits value for fit
|
||||
|
||||
:return data dict with additional values
|
||||
|
||||
order for guess, vary, constraints_min, constraints_max
|
||||
[Gaussian centre, Gaussian sigma, Gaussian amplitude, Lorentzian centre, Lorentzian sigma, Lorentzian amplitude, background slope, background intercept]
|
||||
order for guess, vary, constraints_min, constraints_max:
|
||||
[Gaussian centre, Gaussian sigma, Gaussian amplitude, background slope, background intercept]
|
||||
examples:
|
||||
guess = [None, None, 100, None, None, None, 0, None]
|
||||
vary = [True, True, True, True, False, True, True, True]
|
||||
constraints_min = [23, None, 50, None, None, None, 0, 0]
|
||||
constraints_min = [80, None, 1000, None, None, None, 0, 100]
|
||||
guess = [None, None, 100, 0, None]
|
||||
vary = [True, True, True, True, True]
|
||||
constraints_min = [23, None, 50, 0, 0]
|
||||
constraints_min = [80, None, 1000, 0, 100]
|
||||
"""
|
||||
meas = data["Measurements"][keys]
|
||||
|
||||
if len(meas["peak_indexes"]) != 1:
|
||||
print("NO PEAK or more than 1 peak")
|
||||
if len(meas["peak_indexes"]) > 1:
|
||||
# return in case of more than 1 peaks
|
||||
print("More than 1 peak, measurement skipped")
|
||||
return
|
||||
|
||||
x = list(meas["om"])
|
||||
y = list(meas["Counts"])
|
||||
peak_index = meas["peak_indexes"]
|
||||
peak_height = meas["peak_heights"]
|
||||
print("before", constraints_min)
|
||||
guess[0] = x[int(peak_index)] if guess[0] is None else guess[0]
|
||||
guess[1] = 0.1 if guess[1] is None else guess[1]
|
||||
guess[2] = float(peak_height / 10) if guess[2] is None else float(guess[2])
|
||||
guess[3] = x[int(peak_index)] if guess[3] is None else guess[3]
|
||||
guess[4] = 2 * guess[1] if guess[4] is None else guess[4]
|
||||
guess[5] = float(peak_height / 10) if guess[5] is None else float(guess[5])
|
||||
guess[6] = 0 if guess[6] is None else guess[6]
|
||||
guess[7] = np.median(x) if guess[7] is None else guess[7]
|
||||
constraints_min[0] = np.min(x) if constraints_min[0] is None else constraints_min[0]
|
||||
constraints_min[3] = np.min(x) if constraints_min[3] is None else constraints_min[3]
|
||||
constraints_max[0] = np.max(x) if constraints_max[0] is None else constraints_max[0]
|
||||
constraints_max[3] = np.max(x) if constraints_max[3] is None else constraints_max[3]
|
||||
print("key", keys)
|
||||
# if the dictionaries were merged/substracted, takes the errors from them, if not, takes them as sqrt(y)
|
||||
y_err = np.sqrt(y) if meas.get("sigma", None) is None else meas[keys].get("sigma")
|
||||
|
||||
print("after", constraints_min)
|
||||
if len(meas["peak_indexes"]) == 0:
|
||||
# Case for no peak, gaussian in centre, sigma as 20% of range
|
||||
print("No peak")
|
||||
peak_index = find_nearest(x, np.mean(x))
|
||||
guess[0] = x[int(peak_index)]
|
||||
guess[1] = (x[-1] - x[0]) / 5
|
||||
guess[2] = 10
|
||||
guess[3] = 0
|
||||
guess[4] = np.mean(y)
|
||||
constraints_min[2] = 0
|
||||
|
||||
def find_nearest(array, value):
|
||||
array = np.asarray(array)
|
||||
idx = (np.abs(array - value)).argmin()
|
||||
return idx
|
||||
elif len(meas["peak_indexes"]) == 1:
|
||||
# case for one peak, takse into account users guesses
|
||||
print("one peak")
|
||||
peak_index, peak_height = meas["peak_indexes"], meas["peak_heights"]
|
||||
guess[0] = x[int(peak_index)] if guess[0] is None else guess[0]
|
||||
guess[1] = 0.1 if guess[1] is None else guess[1]
|
||||
guess[2] = float(peak_height / 10) if guess[2] is None else float(guess[2])
|
||||
guess[3] = 0 if guess[3] is None else guess[3]
|
||||
guess[4] = np.median(x) if guess[4] is None else guess[4]
|
||||
constraints_min[0] = np.min(x) if constraints_min[0] is None else constraints_min[0]
|
||||
constraints_max[0] = np.max(x) if constraints_max[0] is None else constraints_max[0]
|
||||
|
||||
centre = x[int(peak_index)]
|
||||
|
||||
def gaussian(x, g_cen, g_width, g_amp):
|
||||
"""1-d gaussian: gaussian(x, amp, cen, wid)"""
|
||||
return (g_amp / (np.sqrt(2.0 * np.pi) * g_width)) * np.exp(
|
||||
return (g_amp / (np.sqrt(2 * np.pi) * g_width)) * np.exp(
|
||||
-((x - g_cen) ** 2) / (2 * g_width ** 2)
|
||||
)
|
||||
|
||||
def lorentzian(x, l_cen, l_width, l_amp):
|
||||
"""1d lorentzian"""
|
||||
return (l_amp / (1 + ((1 * x - l_cen) / l_width) ** 2)) / (np.pi * l_width)
|
||||
|
||||
def background(x, slope, intercept):
|
||||
"""background"""
|
||||
return slope * x + intercept
|
||||
return slope * (x - centre) + intercept
|
||||
|
||||
mod = Model(gaussian) + Model(lorentzian) + Model(background)
|
||||
mod = Model(gaussian) + Model(background)
|
||||
params = Parameters()
|
||||
params.add_many(
|
||||
("g_cen", x[int(peak_index)], bool(vary[0]), np.min(x), np.max(x), None, None),
|
||||
("g_width", guess[1], bool(vary[1]), constraints_min[1], constraints_max[1], None, None),
|
||||
("g_amp", guess[2], bool(vary[2]), constraints_min[2], constraints_max[2], None, None),
|
||||
("l_cen", guess[3], bool(vary[3]), np.min(x), np.max(x), None, None),
|
||||
("l_width", guess[4], bool(vary[4]), constraints_min[4], constraints_max[4], None, None),
|
||||
("l_amp", guess[5], bool(vary[5]), constraints_min[5], constraints_max[5], None, None),
|
||||
("slope", guess[6], bool(vary[6]), constraints_min[6], constraints_max[6], None, None),
|
||||
("intercept", guess[7], bool(vary[7]), constraints_min[7], constraints_max[7], None, None),
|
||||
(
|
||||
"g_width",
|
||||
guess[1],
|
||||
bool(vary[1]),
|
||||
constraints_min[1],
|
||||
constraints_max[1],
|
||||
None,
|
||||
None,
|
||||
),
|
||||
(
|
||||
"g_amp",
|
||||
guess[2],
|
||||
bool(vary[2]),
|
||||
constraints_min[2],
|
||||
constraints_max[2],
|
||||
None,
|
||||
None,
|
||||
),
|
||||
(
|
||||
"slope",
|
||||
guess[3],
|
||||
bool(vary[3]),
|
||||
constraints_min[3],
|
||||
constraints_max[3],
|
||||
None,
|
||||
None,
|
||||
),
|
||||
(
|
||||
"intercept",
|
||||
guess[4],
|
||||
bool(vary[4]),
|
||||
constraints_min[4],
|
||||
constraints_max[4],
|
||||
None,
|
||||
None,
|
||||
),
|
||||
)
|
||||
|
||||
result = mod.fit(y, params, x=x)
|
||||
print("Chi-sqr: ", result.chisqr)
|
||||
|
||||
# the weighted fit
|
||||
result = mod.fit(y, params, weights=y_err, x=x, calc_covar=True)
|
||||
# u.ufloat to work with uncertanities
|
||||
fit_area = u.ufloat(result.params["g_amp"].value, result.params["g_amp"].stderr)
|
||||
comps = result.eval_components()
|
||||
|
||||
gauss_3sigmamin = find_nearest(
|
||||
x, result.params["g_cen"].value - 3 * result.params["g_width"].value
|
||||
)
|
||||
gauss_3sigmamax = find_nearest(
|
||||
x, result.params["g_cen"].value + 3 * result.params["g_width"].value
|
||||
)
|
||||
numfit_min = gauss_3sigmamin if numfit_min is None else find_nearest(x, numfit_min)
|
||||
numfit_max = gauss_3sigmamax if numfit_max is None else find_nearest(x, numfit_max)
|
||||
it = -1
|
||||
if len(meas["peak_indexes"]) == 0:
|
||||
# for case of no peak, there is no reason to integrate, therefore fit and int are equal
|
||||
int_area = fit_area
|
||||
|
||||
while numfit_max == numfit_min:
|
||||
it = it + 1
|
||||
numfit_min = find_nearest(
|
||||
x, result.params["g_cen"].value - 3 * (1 + it / 10) * result.params["g_width"].value
|
||||
elif len(meas["peak_indexes"]) == 1:
|
||||
gauss_3sigmamin = find_nearest(
|
||||
x, result.params["g_cen"].value - 3 * result.params["g_width"].value
|
||||
)
|
||||
numfit_max = find_nearest(
|
||||
x, result.params["g_cen"].value + 3 * (1 + it / 10) * result.params["g_width"].value
|
||||
gauss_3sigmamax = find_nearest(
|
||||
x, result.params["g_cen"].value + 3 * result.params["g_width"].value
|
||||
)
|
||||
numfit_min = gauss_3sigmamin if numfit_min is None else find_nearest(x, numfit_min)
|
||||
numfit_max = gauss_3sigmamax if numfit_max is None else find_nearest(x, numfit_max)
|
||||
|
||||
if x[numfit_min] < np.min(x):
|
||||
numfit_min = gauss_3sigmamin
|
||||
print("Minimal integration value outside of x range")
|
||||
elif x[numfit_min] >= x[numfit_max]:
|
||||
numfit_min = gauss_3sigmamin
|
||||
print("Minimal integration value higher than maximal")
|
||||
else:
|
||||
pass
|
||||
if x[numfit_max] > np.max(x):
|
||||
numfit_max = gauss_3sigmamax
|
||||
print("Maximal integration value outside of x range")
|
||||
elif x[numfit_max] <= x[numfit_min]:
|
||||
numfit_max = gauss_3sigmamax
|
||||
print("Maximal integration value lower than minimal")
|
||||
else:
|
||||
pass
|
||||
print(result.params["g_width"].value)
|
||||
print(result.params["g_cen"].value)
|
||||
num_int_area = simps(y[numfit_min:numfit_max], x[numfit_min:numfit_max])
|
||||
num_int_bacground = integrate.quad(
|
||||
background,
|
||||
x[numfit_min],
|
||||
x[numfit_max],
|
||||
args=(result.params["slope"].value, result.params["intercept"].value),
|
||||
)
|
||||
it = -1
|
||||
while numfit_max == numfit_min:
|
||||
# in the case the peak is very thin and numerical integration would be on zero omega difference, finds closes values
|
||||
it = it + 1
|
||||
numfit_min = find_nearest(
|
||||
x,
|
||||
result.params["g_cen"].value - 3 * (1 + it / 10) * result.params["g_width"].value,
|
||||
)
|
||||
numfit_max = find_nearest(
|
||||
x,
|
||||
result.params["g_cen"].value + 3 * (1 + it / 10) * result.params["g_width"].value,
|
||||
)
|
||||
|
||||
if x[numfit_min] < np.min(x):
|
||||
# makes sure that the values supplied by user lay in the omega range
|
||||
# can be ommited for users who know what they're doing
|
||||
numfit_min = gauss_3sigmamin
|
||||
print("Minimal integration value outside of x range")
|
||||
elif x[numfit_min] >= x[numfit_max]:
|
||||
numfit_min = gauss_3sigmamin
|
||||
print("Minimal integration value higher than maximal")
|
||||
else:
|
||||
pass
|
||||
if x[numfit_max] > np.max(x):
|
||||
numfit_max = gauss_3sigmamax
|
||||
print("Maximal integration value outside of x range")
|
||||
elif x[numfit_max] <= x[numfit_min]:
|
||||
numfit_max = gauss_3sigmamax
|
||||
print("Maximal integration value lower than minimal")
|
||||
else:
|
||||
pass
|
||||
|
||||
count_errors = create_uncertanities(y, y_err)
|
||||
# create error vector for numerical integration propagation
|
||||
num_int_area = simps(count_errors[numfit_min:numfit_max], x[numfit_min:numfit_max])
|
||||
slope_err = u.ufloat(result.params["slope"].value, result.params["slope"].stderr)
|
||||
# pulls the nominal and error values from fit (slope)
|
||||
intercept_err = u.ufloat(
|
||||
result.params["intercept"].value, result.params["intercept"].stderr
|
||||
)
|
||||
# pulls the nominal and error values from fit (intercept)
|
||||
|
||||
background_errors = np.array([])
|
||||
for j in range(len(x[numfit_min:numfit_max])):
|
||||
# creates nominal and error vector for numerical integration of background
|
||||
bg = slope_err * (x[j] - centre) + intercept_err
|
||||
background_errors = np.append(background_errors, bg)
|
||||
|
||||
num_int_background = simps(background_errors, x[numfit_min:numfit_max])
|
||||
int_area = num_int_area - num_int_background
|
||||
|
||||
d = {}
|
||||
for pars in result.params:
|
||||
d[str(pars)] = (result.params[str(pars)].value, result.params[str(pars)].vary)
|
||||
print(result.fit_report())
|
||||
|
||||
print((result.params["g_amp"].value - int_area.n) / result.params["g_amp"].value)
|
||||
d["export_fit"] = False
|
||||
d["int_area"] = num_int_area
|
||||
d["int_background"] = num_int_bacground
|
||||
# ["export_fit"] = False if user wants num. int. value in comm/incomm, otherwise true
|
||||
d["ratio"] = (result.params["g_amp"].value - int_area.n) / result.params["g_amp"].value
|
||||
d["int_area"] = int_area
|
||||
d["fit_area"] = fit_area
|
||||
d["full_report"] = result.fit_report()
|
||||
meas["fit"] = d
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user