Initial implementation of hdf param study panel

This commit is contained in:
usov_i 2021-07-15 08:41:24 +02:00
parent 089a0cf5ac
commit 9f6e7230fa
2 changed files with 250 additions and 447 deletions

View File

@ -4,12 +4,10 @@ import math
import os
import numpy as np
from bokeh.events import MouseEnter
from bokeh.io import curdoc
from bokeh.layouts import column, gridplot, row
from bokeh.models import (
BasicTicker,
BoxEditTool,
BoxZoomTool,
Button,
CheckboxGroup,
@ -20,23 +18,21 @@ from bokeh.models import (
FileInput,
Grid,
MultiSelect,
NumberEditor,
NumberFormatter,
HoverTool,
Image,
Line,
LinearAxis,
LinearColorMapper,
Panel,
PanTool,
Plot,
Range1d,
Rect,
ResetTool,
Scatter,
Select,
Slider,
Spacer,
Spinner,
TableColumn,
Tabs,
TextInput,
Title,
WheelZoomTool,
@ -54,6 +50,7 @@ IMAGE_PLOT_H = int(IMAGE_H * 2) + 27
def create():
doc = curdoc()
zebra_data = []
det_data = {}
cami_meta = {}
@ -100,33 +97,133 @@ def create():
upload_button = FileInput(accept=".cami", width=200)
upload_button.on_change("value", upload_button_callback)
file_select = MultiSelect(title="Available .hdf files:", width=210, height=320)
def _init_datatable():
file_list = []
for scan in zebra_data:
file_list.append(os.path.basename(scan["original_filename"]))
scan_table_source.data.update(
file=file_list,
param=[None] * len(zebra_data),
frame=[None] * len(zebra_data),
x_pos=[None] * len(zebra_data),
y_pos=[None] * len(zebra_data),
)
scan_table_source.selected.indices = []
scan_table_source.selected.indices = [0]
param_select.value = "user defined"
def _update_table():
frame = []
x_pos = []
y_pos = []
for scan in zebra_data:
if "fit" in scan:
framei = scan["fit"]["frame"]
x_posi = scan["fit"]["x_pos"]
y_posi = scan["fit"]["y_pos"]
else:
framei = x_posi = y_posi = None
frame.append(framei)
x_pos.append(x_posi)
y_pos.append(y_posi)
scan_table_source.data.update(frame=frame, x_pos=x_pos, y_pos=y_pos)
def file_open_button_callback():
nonlocal zebra_data
zebra_data = []
for f_name in file_select.value:
zebra_data.append(pyzebra.read_detector_data(f_name))
_init_datatable()
file_open_button = Button(label="Open New", width=100)
file_open_button.on_click(file_open_button_callback)
def file_append_button_callback():
for f_name in file_select.value:
zebra_data.append(pyzebra.read_detector_data(f_name))
_init_datatable()
file_append_button = Button(label="Append", width=100)
file_append_button.on_click(file_append_button_callback)
# Scan select
def scan_table_select_callback(_attr, old, new):
nonlocal det_data
if not new:
# skip empty selections
return
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
if len(new) > 1:
# drop selection to the previous one
scan_table_source.selected.indices = old
return
if len(old) > 1:
# skip unnecessary update caused by selection drop
return
det_data = zebra_data[new[0]]
zebra_mode = det_data["zebra_mode"]
if zebra_mode == "nb":
metadata_table_source.data.update(geom=["normal beam"])
else: # zebra_mode == "bi"
metadata_table_source.data.update(geom=["bisecting"])
update_image(0)
update_overview_plot()
def scan_table_source_callback(_attr, _old, _new):
pass
scan_table_source = ColumnDataSource(dict(file=[], param=[], frame=[], x_pos=[], y_pos=[]))
scan_table_source.selected.on_change("indices", scan_table_select_callback)
scan_table_source.on_change("data", scan_table_source_callback)
scan_table = DataTable(
source=scan_table_source,
columns=[
TableColumn(field="file", title="file", width=150),
TableColumn(field="param", title="param", editor=NumberEditor(), width=50),
TableColumn(field="frame", title="Frame", width=70),
TableColumn(field="x_pos", title="X", width=70),
TableColumn(field="y_pos", title="Y", width=70),
],
width=470, # +60 because of the index column
height=420,
editable=True,
autosize_mode="none",
)
def param_select_callback(_attr, _old, new):
if new == "user defined":
param = [None] * len(zebra_data)
else:
# TODO: which value to take?
param = [scan[new][0] for scan in zebra_data]
scan_table_source.data["param"] = param
_update_param_plot()
param_select = Select(
title="Parameter:",
options=["user defined", "temp", "mf", "h", "k", "l"],
value="user defined",
width=145,
)
param_select.on_change("value", param_select_callback)
def update_image(index=None):
if index is None:
index = index_spinner.value
current_image = det_data["data"][index]
proj_v_line_source.data.update(
x=np.arange(0, IMAGE_W) + 0.5, y=np.mean(current_image, axis=0)
)
proj_h_line_source.data.update(
x=np.mean(current_image, axis=1), y=np.arange(0, IMAGE_H) + 0.5
)
image_source.data.update(
h=[np.zeros((1, 1))], k=[np.zeros((1, 1))], l=[np.zeros((1, 1))],
)
image_source.data.update(image=[current_image])
if main_auto_checkbox.active:
im_min = np.min(current_image)
im_max = np.max(current_image)
display_min_spinner.value = im_min
display_max_spinner.value = im_max
image_glyph.color_mapper.low = im_min
image_glyph.color_mapper.high = im_max
if "mf" in det_data:
metadata_table_source.data.update(mf=[det_data["mf"][index]])
else:
@ -137,10 +234,6 @@ def create():
else:
metadata_table_source.data.update(temp=[None])
gamma, nu = calculate_pol(det_data, index)
omega = np.ones((IMAGE_H, IMAGE_W)) * det_data["omega"][index]
image_source.data.update(gamma=[gamma], nu=[nu], omega=[omega])
def update_overview_plot():
h5_data = det_data["data"]
n_im, n_y, n_x = h5_data.shape
@ -182,191 +275,6 @@ def create():
# handle both, ascending and descending sequences
scanning_motor_range.bounds = (min(var_start, var_end), max(var_start, var_end))
def file_select_callback(_attr, old, new):
nonlocal det_data
if not new:
# skip empty selections
return
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
if len(new) > 1:
# drop selection to the previous one
file_select.value = old
return
if len(old) > 1:
# skip unnecessary update caused by selection drop
return
det_data = pyzebra.read_detector_data(new[0], cami_meta)
index_spinner.value = 0
index_spinner.high = det_data["data"].shape[0] - 1
index_slider.end = det_data["data"].shape[0] - 1
zebra_mode = det_data["zebra_mode"]
if zebra_mode == "nb":
metadata_table_source.data.update(geom=["normal beam"])
else: # zebra_mode == "bi"
metadata_table_source.data.update(geom=["bisecting"])
update_image(0)
update_overview_plot()
file_select = MultiSelect(title="Available .hdf files:", width=210, height=250)
file_select.on_change("value", file_select_callback)
def index_callback(_attr, _old, new):
update_image(new)
index_slider = Slider(value=0, start=0, end=1, show_value=False, width=400)
index_spinner = Spinner(title="Image index:", value=0, low=0, width=100)
index_spinner.on_change("value", index_callback)
index_slider.js_link("value_throttled", index_spinner, "value")
index_spinner.js_link("value", index_slider, "value")
plot = Plot(
x_range=Range1d(0, IMAGE_W, bounds=(0, IMAGE_W)),
y_range=Range1d(0, IMAGE_H, bounds=(0, IMAGE_H)),
plot_height=IMAGE_PLOT_H,
plot_width=IMAGE_PLOT_W,
toolbar_location="left",
)
# ---- tools
plot.toolbar.logo = None
# ---- axes
plot.add_layout(LinearAxis(), place="above")
plot.add_layout(LinearAxis(major_label_orientation="vertical"), place="right")
# ---- grid lines
plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
# ---- rgba image glyph
image_source = ColumnDataSource(
dict(
image=[np.zeros((IMAGE_H, IMAGE_W), dtype="float32")],
h=[np.zeros((1, 1))],
k=[np.zeros((1, 1))],
l=[np.zeros((1, 1))],
gamma=[np.zeros((1, 1))],
nu=[np.zeros((1, 1))],
omega=[np.zeros((1, 1))],
x=[0],
y=[0],
dw=[IMAGE_W],
dh=[IMAGE_H],
)
)
h_glyph = Image(image="h", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
k_glyph = Image(image="k", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
l_glyph = Image(image="l", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
gamma_glyph = Image(image="gamma", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
nu_glyph = Image(image="nu", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
omega_glyph = Image(image="omega", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
plot.add_glyph(image_source, h_glyph)
plot.add_glyph(image_source, k_glyph)
plot.add_glyph(image_source, l_glyph)
plot.add_glyph(image_source, gamma_glyph)
plot.add_glyph(image_source, nu_glyph)
plot.add_glyph(image_source, omega_glyph)
image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
plot.add_glyph(image_source, image_glyph, name="image_glyph")
# calculate hkl-indices of first mouse entry
def mouse_enter_callback(_event):
if det_data and np.array_equal(image_source.data["h"][0], np.zeros((1, 1))):
index = index_spinner.value
h, k, l = calculate_hkl(det_data, index)
image_source.data.update(h=[h], k=[k], l=[l])
plot.on_event(MouseEnter, mouse_enter_callback)
# ---- projections
proj_v = Plot(
x_range=plot.x_range,
y_range=DataRange1d(),
plot_height=150,
plot_width=IMAGE_PLOT_W,
toolbar_location=None,
)
proj_v.add_layout(LinearAxis(major_label_orientation="vertical"), place="right")
proj_v.add_layout(LinearAxis(major_label_text_font_size="0pt"), place="below")
proj_v.add_layout(Grid(dimension=0, ticker=BasicTicker()))
proj_v.add_layout(Grid(dimension=1, ticker=BasicTicker()))
proj_v_line_source = ColumnDataSource(dict(x=[], y=[]))
proj_v.add_glyph(proj_v_line_source, Line(x="x", y="y", line_color="steelblue"))
proj_h = Plot(
x_range=DataRange1d(),
y_range=plot.y_range,
plot_height=IMAGE_PLOT_H,
plot_width=150,
toolbar_location=None,
)
proj_h.add_layout(LinearAxis(), place="above")
proj_h.add_layout(LinearAxis(major_label_text_font_size="0pt"), place="left")
proj_h.add_layout(Grid(dimension=0, ticker=BasicTicker()))
proj_h.add_layout(Grid(dimension=1, ticker=BasicTicker()))
proj_h_line_source = ColumnDataSource(dict(x=[], y=[]))
proj_h.add_glyph(proj_h_line_source, Line(x="x", y="y", line_color="steelblue"))
# add tools
hovertool = HoverTool(
tooltips=[
("intensity", "@image"),
("gamma", "@gamma"),
("nu", "@nu"),
("omega", "@omega"),
("h", "@h"),
("k", "@k"),
("l", "@l"),
]
)
box_edit_source = ColumnDataSource(dict(x=[], y=[], width=[], height=[]))
box_edit_glyph = Rect(
x="x", y="y", width="width", height="height", fill_alpha=0, line_color="red"
)
box_edit_renderer = plot.add_glyph(box_edit_source, box_edit_glyph)
boxedittool = BoxEditTool(renderers=[box_edit_renderer], num_objects=1)
def box_edit_callback(_attr, _old, new):
if new["x"]:
h5_data = det_data["data"]
x_val = np.arange(h5_data.shape[0])
left = int(np.floor(new["x"][0]))
right = int(np.ceil(new["x"][0] + new["width"][0]))
bottom = int(np.floor(new["y"][0]))
top = int(np.ceil(new["y"][0] + new["height"][0]))
y_val = np.sum(h5_data[:, bottom:top, left:right], axis=(1, 2))
else:
x_val = []
y_val = []
roi_avg_plot_line_source.data.update(x=x_val, y=y_val)
box_edit_source.on_change("data", box_edit_callback)
wheelzoomtool = WheelZoomTool(maintain_focus=False)
plot.add_tools(
PanTool(), BoxZoomTool(), wheelzoomtool, ResetTool(), hovertool, boxedittool,
)
plot.toolbar.active_scroll = wheelzoomtool
# shared frame ranges
frame_range = Range1d(0, 1, bounds=(0, 1))
scanning_motor_range = Range1d(0, 1, bounds=(0, 1))
@ -452,28 +360,6 @@ def create():
overview_plot_y_image_source, overview_plot_y_image_glyph, name="image_glyph"
)
roi_avg_plot = Plot(
x_range=DataRange1d(),
y_range=DataRange1d(),
plot_height=150,
plot_width=IMAGE_PLOT_W,
toolbar_location="left",
)
# ---- tools
roi_avg_plot.toolbar.logo = None
# ---- axes
roi_avg_plot.add_layout(LinearAxis(), place="below")
roi_avg_plot.add_layout(LinearAxis(major_label_orientation="vertical"), place="left")
# ---- grid lines
roi_avg_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
roi_avg_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
roi_avg_plot_line_source = ColumnDataSource(dict(x=[], y=[]))
roi_avg_plot.add_glyph(roi_avg_plot_line_source, Line(x="x", y="y", line_color="steelblue"))
cmap_dict = {
"gray": Greys256,
"gray_reversed": Greys256[::-1],
@ -482,7 +368,6 @@ def create():
}
def colormap_callback(_attr, _old, new):
image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
overview_plot_x_image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
overview_plot_y_image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
@ -490,52 +375,6 @@ def create():
colormap.on_change("value", colormap_callback)
colormap.value = "plasma"
STEP = 1
def main_auto_checkbox_callback(state):
if state:
display_min_spinner.disabled = True
display_max_spinner.disabled = True
else:
display_min_spinner.disabled = False
display_max_spinner.disabled = False
update_image()
main_auto_checkbox = CheckboxGroup(
labels=["Frame Intensity Range"], active=[0], width=145, margin=[10, 5, 0, 5]
)
main_auto_checkbox.on_click(main_auto_checkbox_callback)
def display_max_spinner_callback(_attr, _old_value, new_value):
display_min_spinner.high = new_value - STEP
image_glyph.color_mapper.high = new_value
display_max_spinner = Spinner(
low=0 + STEP,
value=1,
step=STEP,
disabled=bool(main_auto_checkbox.active),
width=100,
height=31,
)
display_max_spinner.on_change("value", display_max_spinner_callback)
def display_min_spinner_callback(_attr, _old_value, new_value):
display_max_spinner.low = new_value + STEP
image_glyph.color_mapper.low = new_value
display_min_spinner = Spinner(
low=0,
high=1 - STEP,
value=0,
step=STEP,
disabled=bool(main_auto_checkbox.active),
width=100,
height=31,
)
display_min_spinner.on_change("value", display_min_spinner_callback)
PROJ_STEP = 0.1
def proj_auto_checkbox_callback(state):
@ -584,59 +423,22 @@ def create():
)
proj_display_min_spinner.on_change("value", proj_display_min_spinner_callback)
events_data = dict(
wave=[],
ddist=[],
cell=[],
frame=[],
x_pos=[],
y_pos=[],
intensity=[],
snr_cnts=[],
gamma=[],
omega=[],
chi=[],
phi=[],
nu=[],
)
doc.events_data = events_data
events_table_source = ColumnDataSource(events_data)
events_table = DataTable(
source=events_table_source,
columns=[
TableColumn(field="frame", title="Frame", formatter=num_formatter, width=70),
TableColumn(field="x_pos", title="X", formatter=num_formatter, width=70),
TableColumn(field="y_pos", title="Y", formatter=num_formatter, width=70),
TableColumn(field="intensity", title="Intensity", formatter=num_formatter, width=70),
TableColumn(field="gamma", title="Gamma", formatter=num_formatter, width=70),
TableColumn(field="omega", title="Omega", formatter=num_formatter, width=70),
TableColumn(field="chi", title="Chi", formatter=num_formatter, width=70),
TableColumn(field="phi", title="Phi", formatter=num_formatter, width=70),
TableColumn(field="nu", title="Nu", formatter=num_formatter, width=70),
],
height=150,
width=630,
autosize_mode="none",
index_position=None,
)
def add_event_button_callback():
def fit_event(scan):
p0 = [1.0, 0.0, 1.0]
maxfev = 100000
wave = det_data["wave"]
ddist = det_data["ddist"]
cell = det_data["cell"]
# wave = scan["wave"]
# ddist = scan["ddist"]
# cell = scan["cell"]
gamma = det_data["gamma"][0]
omega = det_data["omega"][0]
nu = det_data["nu"][0]
chi = det_data["chi"][0]
phi = det_data["phi"][0]
# gamma = scan["gamma"][0]
# omega = scan["omega"][0]
# nu = scan["nu"][0]
# chi = scan["chi"][0]
# phi = scan["phi"][0]
scan_motor = det_data["scan_motor"]
var_angle = det_data[scan_motor]
scan_motor = scan["scan_motor"]
var_angle = scan[scan_motor]
x0 = int(np.floor(det_x_range.start))
xN = int(np.ceil(det_x_range.end))
@ -644,32 +446,32 @@ def create():
yN = int(np.ceil(det_y_range.end))
fr0 = int(np.floor(frame_range.start))
frN = int(np.ceil(frame_range.end))
data_roi = det_data["data"][fr0:frN, y0:yN, x0:xN]
data_roi = scan["data"][fr0:frN, y0:yN, x0:xN]
cnts = np.sum(data_roi, axis=(1, 2))
coeff, _ = curve_fit(gauss, range(len(cnts)), cnts, p0=p0, maxfev=maxfev)
m = cnts.mean()
sd = cnts.std()
snr_cnts = np.where(sd == 0, 0, m / sd)
# m = cnts.mean()
# sd = cnts.std()
# snr_cnts = np.where(sd == 0, 0, m / sd)
frC = fr0 + coeff[1]
var_F = var_angle[math.floor(frC)]
var_C = var_angle[math.ceil(frC)]
frStep = frC - math.floor(frC)
# frStep = frC - math.floor(frC)
var_step = var_C - var_F
var_p = var_F + var_step * frStep
# var_p = var_F + var_step * frStep
if scan_motor == "gamma":
gamma = var_p
elif scan_motor == "omega":
omega = var_p
elif scan_motor == "nu":
nu = var_p
elif scan_motor == "chi":
chi = var_p
elif scan_motor == "phi":
phi = var_p
# if scan_motor == "gamma":
# gamma = var_p
# elif scan_motor == "omega":
# omega = var_p
# elif scan_motor == "nu":
# nu = var_p
# elif scan_motor == "chi":
# chi = var_p
# elif scan_motor == "phi":
# phi = var_p
intensity = coeff[1] * abs(coeff[2] * var_step) * math.sqrt(2) * math.sqrt(np.pi)
@ -681,35 +483,7 @@ def create():
coeff, _ = curve_fit(gauss, range(len(projY)), projY, p0=p0, maxfev=maxfev)
y_pos = y0 + coeff[1]
events_data["wave"].append(wave)
events_data["ddist"].append(ddist)
events_data["cell"].append(cell)
events_data["frame"].append(frC)
events_data["x_pos"].append(x_pos)
events_data["y_pos"].append(y_pos)
events_data["intensity"].append(intensity)
events_data["snr_cnts"].append(snr_cnts)
events_data["gamma"].append(gamma)
events_data["omega"].append(omega)
events_data["chi"].append(chi)
events_data["phi"].append(phi)
events_data["nu"].append(nu)
events_table_source.data = events_data
add_event_button = Button(label="Add spind event", width=145)
add_event_button.on_click(add_event_button_callback)
def remove_event_button_callback():
ind2remove = events_table_source.selected.indices
for value in events_data.values():
for ind in reversed(ind2remove):
del value[ind]
events_table_source.data = events_data
remove_event_button = Button(label="Remove spind event", width=145)
remove_event_button.on_click(remove_event_button_callback)
scan["fit"] = {"frame": frC, "x_pos": x_pos, "y_pos": y_pos, "intensity": intensity}
metadata_table_source = ColumnDataSource(dict(geom=[""], temp=[None], mf=[None]))
metadata_table = DataTable(
@ -725,20 +499,78 @@ def create():
index_position=None,
)
# Final layout
import_layout = column(proposal_textinput, upload_div, upload_button, file_select)
layout_image = column(gridplot([[proj_v, None], [plot, proj_h]], merge_tools=False))
colormap_layout = column(
colormap,
main_auto_checkbox,
row(display_min_spinner, display_max_spinner),
proj_auto_checkbox,
row(proj_display_min_spinner, proj_display_max_spinner),
)
def _update_param_plot():
x = []
y = []
fit_param = fit_param_select.value
for s, p in zip(zebra_data, scan_table_source.data["param"]):
if "fit" in s and fit_param:
x.append(p)
y.append(s["fit"][fit_param])
print(x, y)
param_plot_scatter_source.data.update(x=x, y=y)
layout_controls = column(
row(metadata_table, index_spinner, column(Spacer(height=25), index_slider)),
row(column(add_event_button, remove_event_button), events_table),
# Parameter plot
param_plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_height=400, plot_width=700)
param_plot.add_layout(LinearAxis(axis_label="Fit parameter"), place="left")
param_plot.add_layout(LinearAxis(axis_label="Parameter"), place="below")
param_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
param_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
param_plot_scatter_source = ColumnDataSource(dict(x=[], y=[]))
param_plot.add_glyph(param_plot_scatter_source, Scatter(x="x", y="y"))
param_plot.add_tools(PanTool(), WheelZoomTool(), ResetTool())
param_plot.toolbar.logo = None
def fit_param_select_callback(_attr, _old, _new):
_update_param_plot()
fit_param_select = Select(title="Fit parameter", options=[], width=145)
fit_param_select.on_change("value", fit_param_select_callback)
def proc_all_button_callback():
for scan in zebra_data:
fit_event(scan)
_update_table()
for scan in zebra_data:
if "fit" in scan:
options = list(scan["fit"].keys())
fit_param_select.options = options
fit_param_select.value = options[0]
break
_update_param_plot()
proc_all_button = Button(label="Process All", button_type="primary", width=145)
proc_all_button.on_click(proc_all_button_callback)
def proc_button_callback():
fit_event(det_data)
_update_table()
for scan in zebra_data:
if "fit" in scan:
options = list(scan["fit"].keys())
fit_param_select.options = options
fit_param_select.value = options[0]
break
_update_param_plot()
proc_button = Button(label="Process Current", width=145)
proc_button.on_click(proc_button_callback)
layout_controls = row(
colormap,
column(proj_auto_checkbox, row(proj_display_min_spinner, proj_display_max_spinner)),
proc_button,
proc_all_button,
)
layout_overview = column(
@ -748,14 +580,30 @@ def create():
merge_tools=True,
toolbar_location="left",
),
layout_controls,
)
tab_layout = row(
column(import_layout, colormap_layout),
column(layout_overview, layout_controls),
column(roi_avg_plot, layout_image),
# Plot tabs
plots = Tabs(
tabs=[
Panel(child=layout_overview, title="single scan"),
Panel(child=column(param_plot, row(fit_param_select)), title="parameter plot"),
]
)
# Final layout
import_layout = column(
proposal_textinput,
upload_div,
upload_button,
file_select,
row(file_open_button, file_append_button),
)
scan_layout = column(scan_table, row(param_select, metadata_table))
tab_layout = column(row(import_layout, scan_layout, plots))
return Panel(child=tab_layout, title="hdf param study")
@ -768,49 +616,3 @@ def gauss(x, *p):
"""
A, mu, sigma = p
return A * np.exp(-((x - mu) ** 2) / (2.0 * sigma ** 2))
def calculate_hkl(det_data, index):
h = np.empty(shape=(IMAGE_H, IMAGE_W))
k = np.empty(shape=(IMAGE_H, IMAGE_W))
l = np.empty(shape=(IMAGE_H, IMAGE_W))
wave = det_data["wave"]
ddist = det_data["ddist"]
gammad = det_data["gamma"][index]
om = det_data["omega"][index]
nud = det_data["nu"]
ub = det_data["ub"]
geometry = det_data["zebra_mode"]
if geometry == "bi":
chi = det_data["chi"][index]
phi = det_data["phi"][index]
elif geometry == "nb":
chi = 0
phi = 0
else:
raise ValueError(f"Unknown geometry type '{geometry}'")
for xi in np.arange(IMAGE_W):
for yi in np.arange(IMAGE_H):
h[yi, xi], k[yi, xi], l[yi, xi] = pyzebra.ang2hkl(
wave, ddist, gammad, om, chi, phi, nud, ub, xi, yi
)
return h, k, l
def calculate_pol(det_data, index):
gamma = np.empty(shape=(IMAGE_H, IMAGE_W))
nu = np.empty(shape=(IMAGE_H, IMAGE_W))
ddist = det_data["ddist"]
gammad = det_data["gamma"][index]
nud = det_data["nu"]
for xi in np.arange(IMAGE_W):
for yi in np.arange(IMAGE_H):
gamma[yi, xi], nu[yi, xi] = pyzebra.det2pol(ddist, gammad, nud, xi, yi)
return gamma, nu

View File

@ -75,6 +75,7 @@ def read_detector_data(filepath, cami_meta=None):
data = data.reshape(n, rows, cols)
det_data = {"data": data}
det_data["original_filename"] = filepath
if "/entry1/zebra_mode" in h5f:
det_data["zebra_mode"] = h5f["/entry1/zebra_mode"][0].decode()