Refactor fit_event

This commit is contained in:
usov_i 2021-10-19 10:59:06 +02:00
parent cf2f8435e7
commit 813270d6f8
2 changed files with 43 additions and 78 deletions

View File

@ -1,6 +1,5 @@
import base64 import base64
import io import io
import math
import os import os
import numpy as np import numpy as np
@ -38,7 +37,6 @@ from bokeh.models import (
WheelZoomTool, WheelZoomTool,
) )
from bokeh.palettes import Cividis256, Greys256, Plasma256 # pylint: disable=E0611 from bokeh.palettes import Cividis256, Greys256, Plasma256 # pylint: disable=E0611
from scipy.optimize import curve_fit
import pyzebra import pyzebra
@ -447,68 +445,6 @@ def create():
) )
proj_display_min_spinner.on_change("value", proj_display_min_spinner_callback) proj_display_min_spinner.on_change("value", proj_display_min_spinner_callback)
def fit_event(scan):
p0 = [1.0, 0.0, 1.0]
maxfev = 100000
# wave = scan["wave"]
# ddist = scan["ddist"]
# cell = scan["cell"]
# gamma = scan["gamma"][0]
# omega = scan["omega"][0]
# nu = scan["nu"][0]
# chi = scan["chi"][0]
# phi = scan["phi"][0]
scan_motor = scan["scan_motor"]
var_angle = scan[scan_motor]
x0 = int(np.floor(det_x_range.start))
xN = int(np.ceil(det_x_range.end))
y0 = int(np.floor(det_y_range.start))
yN = int(np.ceil(det_y_range.end))
fr0 = int(np.floor(frame_range.start))
frN = int(np.ceil(frame_range.end))
data_roi = scan["data"][fr0:frN, y0:yN, x0:xN]
cnts = np.sum(data_roi, axis=(1, 2))
coeff, _ = curve_fit(gauss, range(len(cnts)), cnts, p0=p0, maxfev=maxfev)
# m = cnts.mean()
# sd = cnts.std()
# snr_cnts = np.where(sd == 0, 0, m / sd)
frC = fr0 + coeff[1]
var_F = var_angle[math.floor(frC)]
var_C = var_angle[math.ceil(frC)]
# frStep = frC - math.floor(frC)
var_step = var_C - var_F
# var_p = var_F + var_step * frStep
# if scan_motor == "gamma":
# gamma = var_p
# elif scan_motor == "omega":
# omega = var_p
# elif scan_motor == "nu":
# nu = var_p
# elif scan_motor == "chi":
# chi = var_p
# elif scan_motor == "phi":
# phi = var_p
intensity = coeff[1] * abs(coeff[2] * var_step) * math.sqrt(2) * math.sqrt(np.pi)
projX = np.sum(data_roi, axis=(0, 1))
coeff, _ = curve_fit(gauss, range(len(projX)), projX, p0=p0, maxfev=maxfev)
x_pos = x0 + coeff[1]
projY = np.sum(data_roi, axis=(0, 2))
coeff, _ = curve_fit(gauss, range(len(projY)), projY, p0=p0, maxfev=maxfev)
y_pos = y0 + coeff[1]
scan["fit"] = {"frame": frC, "x_pos": x_pos, "y_pos": y_pos, "intensity": intensity}
metadata_table_source = ColumnDataSource(dict(geom=[""], temp=[None], mf=[None])) metadata_table_source = ColumnDataSource(dict(geom=[""], temp=[None], mf=[None]))
metadata_table = DataTable( metadata_table = DataTable(
source=metadata_table_source, source=metadata_table_source,
@ -556,7 +492,15 @@ def create():
def proc_all_button_callback(): def proc_all_button_callback():
for scan in zebra_data: for scan in zebra_data:
fit_event(scan) pyzebra.fit_event(
scan,
int(np.floor(frame_range.start)),
int(np.ceil(frame_range.end)),
int(np.floor(det_y_range.start)),
int(np.ceil(det_y_range.end)),
int(np.floor(det_x_range.start)),
int(np.ceil(det_x_range.end)),
)
_update_table() _update_table()
@ -573,7 +517,15 @@ def create():
proc_all_button.on_click(proc_all_button_callback) proc_all_button.on_click(proc_all_button_callback)
def proc_button_callback(): def proc_button_callback():
fit_event(det_data) pyzebra.fit_event(
det_data,
int(np.floor(frame_range.start)),
int(np.ceil(frame_range.end)),
int(np.floor(det_y_range.start)),
int(np.ceil(det_y_range.end)),
int(np.floor(det_x_range.start)),
int(np.ceil(det_x_range.end)),
)
_update_table() _update_table()
@ -628,14 +580,3 @@ def create():
tab_layout = column(row(import_layout, scan_layout, plots)) tab_layout = column(row(import_layout, scan_layout, plots))
return Panel(child=tab_layout, title="hdf param study") return Panel(child=tab_layout, title="hdf param study")
def gauss(x, *p):
"""Defines Gaussian function
Args:
A - amplitude, mu - position of the center, sigma - width
Returns:
Gaussian function
"""
A, mu, sigma = p
return A * np.exp(-((x - mu) ** 2) / (2.0 * sigma ** 2))

View File

@ -1,7 +1,7 @@
import os import os
import numpy as np import numpy as np
from lmfit.models import GaussianModel, LinearModel, PseudoVoigtModel, VoigtModel from lmfit.models import Gaussian2dModel, GaussianModel, LinearModel, PseudoVoigtModel, VoigtModel
from scipy.integrate import simpson, trapezoid from scipy.integrate import simpson, trapezoid
from .ccl_io import CCL_ANGLES from .ccl_io import CCL_ANGLES
@ -244,3 +244,27 @@ def get_area(scan, area_method, lorentz):
area_s = np.abs(area_s * corr_factor) area_s = np.abs(area_s * corr_factor)
scan["area"] = (area_v, area_s) scan["area"] = (area_v, area_s)
def fit_event(scan, fr_from, fr_to, y_from, y_to, x_from, x_to):
data_roi = scan["data"][fr_from:fr_to, y_from:y_to, x_from:x_to]
model = GaussianModel()
fr = np.arange(fr_from, fr_to)
counts_per_fr = np.sum(data_roi, axis=(1, 2))
params = model.guess(counts_per_fr, fr)
result = model.fit(counts_per_fr, x=fr, params=params)
frC = result.params["center"].value
intensity = result.params["height"].value
model = Gaussian2dModel()
xs, ys = np.meshgrid(np.arange(x_from, x_to), np.arange(y_from, y_to))
xs = xs.flatten()
ys = ys.flatten()
counts = np.sum(data_roi, axis=0).flatten()
params = model.guess(counts, xs, ys)
result = model.fit(counts, x=xs, y=ys, params=params)
xC = result.params["centerx"].value
yC = result.params["centery"].value
scan["fit"] = {"frame": frC, "x_pos": xC, "y_pos": yC, "intensity": intensity}