apply black formating
Co-authored-by: Ivan Usov <ivan.a.usov@gmail.com>
This commit is contained in:
parent
a287b78245
commit
6a3ca53de1
@ -70,13 +70,14 @@ def update_image():
|
||||
if auto_toggle.active:
|
||||
im_max = int(np.max(current_image))
|
||||
im_min = int(np.min(current_image))
|
||||
|
||||
|
||||
display_min_spinner.value = im_min
|
||||
display_max_spinner.value = im_max
|
||||
|
||||
|
||||
image_glyph.color_mapper.low = im_min
|
||||
image_glyph.color_mapper.high = im_max
|
||||
|
||||
|
||||
def calculate_hkl(setup_type="nb_bi"):
|
||||
h = np.empty(shape=(IMAGE_H, IMAGE_W))
|
||||
k = np.empty(shape=(IMAGE_H, IMAGE_W))
|
||||
@ -435,6 +436,7 @@ def auto_toggle_callback(state):
|
||||
|
||||
update_image()
|
||||
|
||||
|
||||
auto_toggle = Toggle(label="Auto Range", active=True, button_type="default")
|
||||
auto_toggle.on_click(auto_toggle_callback)
|
||||
|
||||
|
@ -1,5 +1,6 @@
|
||||
import h5py
|
||||
|
||||
|
||||
def read_h5meta(filepath):
|
||||
"""Read and parse content of a h5meta file.
|
||||
|
||||
@ -46,17 +47,18 @@ def read_detector_data(filepath):
|
||||
|
||||
det_data = {"data": data}
|
||||
|
||||
det_data["rot_angle"] = h5f["/entry1/area_detector2/rotation_angle"][:] # om, sometimes ph
|
||||
det_data["pol_angle"] = h5f["/entry1/ZEBRA/area_detector2/polar_angle"][:] # gammad
|
||||
det_data["rot_angle"] = h5f["/entry1/area_detector2/rotation_angle"][:] # om, sometimes ph
|
||||
det_data["pol_angle"] = h5f["/entry1/ZEBRA/area_detector2/polar_angle"][:] # gammad
|
||||
det_data["tlt_angle"] = h5f["/entry1/ZEBRA/area_detector2/tilt_angle"][:] # nud
|
||||
det_data["ddist"] = h5f["/entry1/ZEBRA/area_detector2/distance"][:]
|
||||
det_data["wave"] = h5f["/entry1/ZEBRA/monochromator/wavelength"][:]
|
||||
det_data["chi_angle"] = h5f["/entry1/sample/chi"][:] # ch
|
||||
det_data["phi_angle"] = h5f["/entry1/sample/phi"][:] # ph
|
||||
det_data["UB"] = h5f["/entry1/sample/UB"][:].reshape(3,3)
|
||||
det_data["ddist"] = h5f["/entry1/ZEBRA/area_detector2/distance"][:]
|
||||
det_data["wave"] = h5f["/entry1/ZEBRA/monochromator/wavelength"][:]
|
||||
det_data["chi_angle"] = h5f["/entry1/sample/chi"][:] # ch
|
||||
det_data["phi_angle"] = h5f["/entry1/sample/phi"][:] # ph
|
||||
det_data["UB"] = h5f["/entry1/sample/UB"][:].reshape(3, 3)
|
||||
|
||||
return det_data
|
||||
|
||||
|
||||
def open_h5meta(filepath):
|
||||
"""Open h5meta file like *.cami
|
||||
|
||||
|
386
pyzebra/xtal.py
386
pyzebra/xtal.py
@ -4,7 +4,8 @@ from scipy.optimize import curve_fit
|
||||
from matplotlib import pyplot as plt
|
||||
import pyzebra
|
||||
|
||||
def z4frgn(wave,ga,nu):
|
||||
|
||||
def z4frgn(wave, ga, nu):
|
||||
"""CALCULATES DIFFRACTION VECTOR IN LAB SYSTEM FROM GA AND NU
|
||||
|
||||
Args:
|
||||
@ -15,16 +16,17 @@ def z4frgn(wave,ga,nu):
|
||||
"""
|
||||
sin = np.sin
|
||||
cos = np.cos
|
||||
pir = 180/np.pi
|
||||
gar = ga/pir
|
||||
nur = nu/pir
|
||||
z4 = [0., 0., 0.]
|
||||
z4[0]=( sin(gar)*cos(nur) )/wave
|
||||
z4[1]=( cos(gar)*cos(nur)-1. )/wave
|
||||
z4[2]=( sin(nur) )/wave
|
||||
pir = 180 / np.pi
|
||||
gar = ga / pir
|
||||
nur = nu / pir
|
||||
z4 = [0.0, 0.0, 0.0]
|
||||
z4[0] = (sin(gar) * cos(nur)) / wave
|
||||
z4[1] = (cos(gar) * cos(nur) - 1.0) / wave
|
||||
z4[2] = (sin(nur)) / wave
|
||||
|
||||
return z4
|
||||
|
||||
|
||||
|
||||
def phimat(phi):
|
||||
"""BUSING AND LEVY CONVENTION ROTATION MATRIX FOR PHI OR OMEGA
|
||||
|
||||
@ -36,19 +38,20 @@ def phimat(phi):
|
||||
"""
|
||||
sin = np.sin
|
||||
cos = np.cos
|
||||
pir = 180/np.pi
|
||||
phr = phi/pir
|
||||
pir = 180 / np.pi
|
||||
phr = phi / pir
|
||||
|
||||
dum = np.zeros(9).reshape(3,3)
|
||||
dum[0,0] = cos(phr)
|
||||
dum[0,1] = sin(phr)
|
||||
dum[1,0] = -dum[0,1]
|
||||
dum[1,1] = dum[0,0]
|
||||
dum[2,2] = 1
|
||||
dum = np.zeros(9).reshape(3, 3)
|
||||
dum[0, 0] = cos(phr)
|
||||
dum[0, 1] = sin(phr)
|
||||
dum[1, 0] = -dum[0, 1]
|
||||
dum[1, 1] = dum[0, 0]
|
||||
dum[2, 2] = 1
|
||||
|
||||
return dum
|
||||
|
||||
def z1frnb(wave,ga,nu,om):
|
||||
|
||||
|
||||
def z1frnb(wave, ga, nu, om):
|
||||
"""CALCULATE DIFFRACTION VECTOR Z1 FROM GA, OM, NU, ASSUMING CH=PH=0
|
||||
|
||||
Args:
|
||||
@ -57,14 +60,15 @@ def z1frnb(wave,ga,nu,om):
|
||||
Returns:
|
||||
Z1
|
||||
"""
|
||||
|
||||
z4 = z4frgn(wave,ga,nu)
|
||||
|
||||
z4 = z4frgn(wave, ga, nu)
|
||||
dum = phimat(phi=om)
|
||||
dumt = np.transpose(dum)
|
||||
z3 = dumt.dot(z4)
|
||||
|
||||
return z3
|
||||
|
||||
|
||||
|
||||
def chimat(chi):
|
||||
"""BUSING AND LEVY CONVENTION ROTATION MATRIX FOR CHI
|
||||
|
||||
@ -76,19 +80,20 @@ def chimat(chi):
|
||||
"""
|
||||
sin = np.sin
|
||||
cos = np.cos
|
||||
pir = 180/np.pi
|
||||
chr = chi/pir
|
||||
pir = 180 / np.pi
|
||||
chr = chi / pir
|
||||
|
||||
dum = np.zeros(9).reshape(3,3)
|
||||
dum[0,0] = cos(chr)
|
||||
dum[0,2] = sin(chr)
|
||||
dum[1,1] = 1
|
||||
dum[2,0] = -dum[0,2]
|
||||
dum[2,2] = dum[0,0]
|
||||
dum = np.zeros(9).reshape(3, 3)
|
||||
dum[0, 0] = cos(chr)
|
||||
dum[0, 2] = sin(chr)
|
||||
dum[1, 1] = 1
|
||||
dum[2, 0] = -dum[0, 2]
|
||||
dum[2, 2] = dum[0, 0]
|
||||
|
||||
return dum
|
||||
|
||||
def z1frz3(z3,chi,phi):
|
||||
|
||||
|
||||
def z1frz3(z3, chi, phi):
|
||||
"""CALCULATE Z1 = [PHI]T.[CHI]T.Z3
|
||||
|
||||
Args:
|
||||
@ -97,18 +102,19 @@ def z1frz3(z3,chi,phi):
|
||||
Returns:
|
||||
Z1
|
||||
"""
|
||||
|
||||
|
||||
dum1 = chimat(chi)
|
||||
dum2 = np.transpose(dum1)
|
||||
z2 = dum2.dot(z3)
|
||||
|
||||
|
||||
dum1 = phimat(phi)
|
||||
dum2 = np.transpose(dum1)
|
||||
z1 = dum2.dot(z2)
|
||||
|
||||
|
||||
return z1
|
||||
|
||||
def z1frmd(wave,ga,om,chi,phi,nu):
|
||||
|
||||
|
||||
def z1frmd(wave, ga, om, chi, phi, nu):
|
||||
"""CALCULATE DIFFRACTION VECTOR Z1 FROM CH, PH, GA, OM, NU
|
||||
|
||||
Args:
|
||||
@ -117,12 +123,13 @@ def z1frmd(wave,ga,om,chi,phi,nu):
|
||||
Returns:
|
||||
Z1
|
||||
"""
|
||||
z3 = z1frnb(wave,ga,nu,om)
|
||||
z1 = z1frz3(z3,chi,phi)
|
||||
|
||||
z3 = z1frnb(wave, ga, nu, om)
|
||||
z1 = z1frz3(z3, chi, phi)
|
||||
|
||||
return z1
|
||||
|
||||
def det2pol(ddist,gammad,nud,x,y):
|
||||
|
||||
|
||||
def det2pol(ddist, gammad, nud, x, y):
|
||||
"""CONVERTS FROM DETECTOR COORDINATES TO POLAR COORDINATES
|
||||
|
||||
Args:
|
||||
@ -131,25 +138,26 @@ def det2pol(ddist,gammad,nud,x,y):
|
||||
|
||||
Returns:
|
||||
gamma, nu polar coordinates
|
||||
"""
|
||||
"""
|
||||
xnorm = 128
|
||||
ynorm = 64
|
||||
xpix = 0.734
|
||||
ypix = 1.4809
|
||||
|
||||
xobs = (x - xnorm)*xpix
|
||||
yobs = (y - ynorm)*ypix
|
||||
|
||||
xobs = (x - xnorm) * xpix
|
||||
yobs = (y - ynorm) * ypix
|
||||
a = xobs
|
||||
b = ddist * np.cos(yobs/ddist)
|
||||
z = ddist * np.sin(yobs/ddist)
|
||||
d = np.sqrt(a*a+b*b)
|
||||
pir = 180/np.pi
|
||||
|
||||
gamma = gammad + np.arctan2(a,b)*pir
|
||||
nu = nud + np.arctan2(z,d)*pir
|
||||
b = ddist * np.cos(yobs / ddist)
|
||||
z = ddist * np.sin(yobs / ddist)
|
||||
d = np.sqrt(a * a + b * b)
|
||||
pir = 180 / np.pi
|
||||
|
||||
gamma = gammad + np.arctan2(a, b) * pir
|
||||
nu = nud + np.arctan2(z, d) * pir
|
||||
|
||||
return gamma, nu
|
||||
|
||||
|
||||
|
||||
def eqchph(z1):
|
||||
"""CALCULATE CHI, PHI TO PUT THE VECTOR Z1 IN THE EQUATORIAL PLANE
|
||||
|
||||
@ -159,27 +167,27 @@ def eqchph(z1):
|
||||
Returns:
|
||||
chi, phi
|
||||
"""
|
||||
pir = 180/np.pi
|
||||
|
||||
pir = 180 / np.pi
|
||||
|
||||
if z1[0] != 0 or z1[1] != 0:
|
||||
ph = np.arctan2(z1[1],z1[0])
|
||||
ph = np.arctan2(z1[1], z1[0])
|
||||
ph = ph * pir
|
||||
d = np.sqrt(z1[0]*z1[0]+z1[1]*z1[1])
|
||||
ch = np.arctan2(z1[2],d)
|
||||
d = np.sqrt(z1[0] * z1[0] + z1[1] * z1[1])
|
||||
ch = np.arctan2(z1[2], d)
|
||||
ch = ch * pir
|
||||
else:
|
||||
else:
|
||||
ph = 0
|
||||
ch = 90
|
||||
if z1[2] < 0:
|
||||
ch = -ch
|
||||
|
||||
|
||||
ch = 180 - ch
|
||||
ph = 180 + ph
|
||||
ph = 180 + ph
|
||||
|
||||
return ch, ph
|
||||
|
||||
|
||||
def dandth(wave,z1):
|
||||
|
||||
def dandth(wave, z1):
|
||||
"""CALCULATE D-SPACING (REAL SPACE) AND THETA FROM LENGTH OF Z
|
||||
|
||||
Args:
|
||||
@ -188,28 +196,28 @@ def dandth(wave,z1):
|
||||
Returns:
|
||||
ds, th
|
||||
"""
|
||||
pir = 180/np.pi
|
||||
|
||||
pir = 180 / np.pi
|
||||
|
||||
ierr = 0
|
||||
dstar = np.sqrt(z1[0]*z1[0]+z1[1]*z1[1]+z1[2]*z1[2])
|
||||
|
||||
dstar = np.sqrt(z1[0] * z1[0] + z1[1] * z1[1] + z1[2] * z1[2])
|
||||
|
||||
if dstar > 0.0001:
|
||||
ds = 1/dstar
|
||||
sint = wave * dstar/2
|
||||
ds = 1 / dstar
|
||||
sint = wave * dstar / 2
|
||||
if np.abs(sint) <= 1:
|
||||
th = np.arcsin(sint)*pir
|
||||
th = np.arcsin(sint) * pir
|
||||
else:
|
||||
ierr = 2
|
||||
th = 0
|
||||
else:
|
||||
th = 0
|
||||
else:
|
||||
ierr = 1
|
||||
ds = 0
|
||||
th = 0
|
||||
th = 0
|
||||
|
||||
return ds, th, ierr
|
||||
|
||||
|
||||
def angs4c(wave,z1,ch2,ph2):
|
||||
def angs4c(wave, z1, ch2, ph2):
|
||||
"""CALCULATE 2-THETA, OMEGA (=THETA), CHI, PHI TO PUT THE
|
||||
VECTOR Z1 IN THE BISECTING DIFFRACTION CONDITION
|
||||
|
||||
@ -222,20 +230,20 @@ def angs4c(wave,z1,ch2,ph2):
|
||||
ch2, ph2 = eqchph(z1)
|
||||
ch = ch2
|
||||
ph = ph2
|
||||
ds, th, ierr = dandth(wave,z1)
|
||||
ds, th, ierr = dandth(wave, z1)
|
||||
if ierr == 0:
|
||||
om = th
|
||||
tth = th*2
|
||||
tth = th * 2
|
||||
else:
|
||||
tth = 0
|
||||
om = 0
|
||||
ch = 0
|
||||
ph = 0
|
||||
|
||||
|
||||
return tth, om, ch, ph, ierr
|
||||
|
||||
|
||||
def fixdnu(wave,z1,ch2,ph2,nu):
|
||||
def fixdnu(wave, z1, ch2, ph2, nu):
|
||||
"""CALCULATE A SETTING CH,PH,GA,OM TO PUT THE DIFFRACTED BEAM AT NU.
|
||||
PH PUTS THE DIFFRACTION VECTOR Z1 INTO THE CHI CIRCLE (AS FOR
|
||||
BISECTING GEOMETRY), CH BRINGS THE VECTOR TO THE APPROPRIATE NU
|
||||
@ -247,9 +255,9 @@ def fixdnu(wave,z1,ch2,ph2,nu):
|
||||
Returns:
|
||||
tth, om, ch, ph
|
||||
"""
|
||||
pir = 180/np.pi
|
||||
pir = 180 / np.pi
|
||||
|
||||
tth, om, ch, ph, ierr = angs4c(wave,z1,ch2,ph2)
|
||||
tth, om, ch, ph, ierr = angs4c(wave, z1, ch2, ph2)
|
||||
theta = om
|
||||
if ierr != 0:
|
||||
ch = 0
|
||||
@ -257,15 +265,15 @@ def fixdnu(wave,z1,ch2,ph2,nu):
|
||||
ga = 0
|
||||
om = 0
|
||||
else:
|
||||
if np.abs(np.cos(nu/pir)) > 0.0001:
|
||||
cosga = np.cos(tth/pir)/np.cos(nu/pir)
|
||||
if np.abs(np.cos(nu / pir)) > 0.0001:
|
||||
cosga = np.cos(tth / pir) / np.cos(nu / pir)
|
||||
if np.abs(cosga) <= 1:
|
||||
ga = np.arccos(cosga)*pir
|
||||
z4 = z4frgn(wave,ga,nu)
|
||||
om = np.arctan2(-z4[1],z4[0])*pir
|
||||
ch2 = np.arcsin(z4[2]*wave/(2*np.sin(theta/pir)))*pir
|
||||
ga = np.arccos(cosga) * pir
|
||||
z4 = z4frgn(wave, ga, nu)
|
||||
om = np.arctan2(-z4[1], z4[0]) * pir
|
||||
ch2 = np.arcsin(z4[2] * wave / (2 * np.sin(theta / pir))) * pir
|
||||
ch = ch - ch2
|
||||
ch = ch - 360 * np.trunc((np.sign(ch)*180+ch)/360)
|
||||
ch = ch - 360 * np.trunc((np.sign(ch) * 180 + ch) / 360)
|
||||
else:
|
||||
ierr = -2
|
||||
ch = 0
|
||||
@ -276,23 +284,24 @@ def fixdnu(wave,z1,ch2,ph2,nu):
|
||||
if theta > 44.99 and theta < 45.01:
|
||||
ga = 90
|
||||
om = 90
|
||||
ch2 = np.sign(nu)*45
|
||||
ch2 = np.sign(nu) * 45
|
||||
ch = ch - ch2
|
||||
ch = ch - 360 * np.trunc((np.sign(ch)*180+ch)/360)
|
||||
ch = ch - 360 * np.trunc((np.sign(ch) * 180 + ch) / 360)
|
||||
else:
|
||||
ierr = -1
|
||||
ch = 0
|
||||
ph = 0
|
||||
ga = 0
|
||||
om = 0
|
||||
|
||||
return ch, ph, ga, om
|
||||
|
||||
|
||||
#for test run:
|
||||
return ch, ph, ga, om
|
||||
|
||||
|
||||
# for test run:
|
||||
# angtohkl(wave=1.18,ddist=616,gammad=48.66,om=-22.80,ch=0,ph=0,nud=0,x=128,y=64)
|
||||
|
||||
def angtohkl(wave,ddist,gammad,om,ch,ph,nud,x,y):
|
||||
|
||||
|
||||
def angtohkl(wave, ddist, gammad, om, ch, ph, nud, x, y):
|
||||
"""finds hkl-indices of a reflection from its position (x,y,angles) at the 2d-detector
|
||||
|
||||
Args:
|
||||
@ -301,35 +310,74 @@ def angtohkl(wave,ddist,gammad,om,ch,ph,nud,x,y):
|
||||
Returns:
|
||||
|
||||
"""
|
||||
pir = 180/np.pi
|
||||
|
||||
#define ub matrix if testing angtohkl(wave=1.18,ddist=616,gammad=48.66,om=-22.80,ch=0,ph=0,nud=0,x=128,y=64) against f90:
|
||||
# ub = np.array([-0.0178803,-0.0749231,0.0282804,-0.0070082,-0.0368001,-0.0577467,0.1609116,-0.0099281,0.0006274]).reshape(3,3)
|
||||
ub = np.array([0.04489,0.02045,-0.2334,-0.06447,0.00129,-0.16356,-0.00328,0.2542,0.0196]).reshape(3,3)
|
||||
print('The input values are: ga=', gammad, ', om=', om, ', ch=', ch, ', ph=', ph, ', nu=', nud, ', x=', x, ', y=', y)
|
||||
|
||||
ga, nu = det2pol(ddist,gammad,nud,x,y)
|
||||
|
||||
print('The calculated actual angles are: ga=', ga, ', om=', om, ', ch=', ch, ', ph=', ph, ', nu=', nu)
|
||||
|
||||
z1 = z1frmd(wave,ga,om,ch,ph,nu)
|
||||
|
||||
print('The diffraction vector is:', z1[0],z1[1],z1[2])
|
||||
|
||||
ubinv = np.linalg.inv(ub)
|
||||
|
||||
h = ubinv[0,0]*z1[0]+ubinv[0,1]*z1[1]+ubinv[0,2]*z1[2]
|
||||
k = ubinv[1,0]*z1[0]+ubinv[1,1]*z1[1]+ubinv[1,2]*z1[2]
|
||||
l = ubinv[2,0]*z1[0]+ubinv[2,1]*z1[1]+ubinv[2,2]*z1[2]
|
||||
|
||||
print('The Miller indexes are:', h,k,l)
|
||||
|
||||
ch2, ph2 = eqchph(z1)
|
||||
ch, ph, ga, om = fixdnu(wave,z1,ch2,ph2,nu)
|
||||
|
||||
print('Bisecting angles to put reflection into the detector center: ga=', ga, ', om=', om, ', ch=', ch, ', ph=', ph, ', nu=', nu)
|
||||
pir = 180 / np.pi
|
||||
|
||||
# define ub matrix if testing angtohkl(wave=1.18,ddist=616,gammad=48.66,om=-22.80,ch=0,ph=0,nud=0,x=128,y=64) against f90:
|
||||
# ub = np.array([-0.0178803,-0.0749231,0.0282804,-0.0070082,-0.0368001,-0.0577467,0.1609116,-0.0099281,0.0006274]).reshape(3,3)
|
||||
ub = np.array(
|
||||
[0.04489, 0.02045, -0.2334, -0.06447, 0.00129, -0.16356, -0.00328, 0.2542, 0.0196]
|
||||
).reshape(3, 3)
|
||||
print(
|
||||
"The input values are: ga=",
|
||||
gammad,
|
||||
", om=",
|
||||
om,
|
||||
", ch=",
|
||||
ch,
|
||||
", ph=",
|
||||
ph,
|
||||
", nu=",
|
||||
nud,
|
||||
", x=",
|
||||
x,
|
||||
", y=",
|
||||
y,
|
||||
)
|
||||
|
||||
ga, nu = det2pol(ddist, gammad, nud, x, y)
|
||||
|
||||
print(
|
||||
"The calculated actual angles are: ga=",
|
||||
ga,
|
||||
", om=",
|
||||
om,
|
||||
", ch=",
|
||||
ch,
|
||||
", ph=",
|
||||
ph,
|
||||
", nu=",
|
||||
nu,
|
||||
)
|
||||
|
||||
z1 = z1frmd(wave, ga, om, ch, ph, nu)
|
||||
|
||||
print("The diffraction vector is:", z1[0], z1[1], z1[2])
|
||||
|
||||
ubinv = np.linalg.inv(ub)
|
||||
|
||||
h = ubinv[0, 0] * z1[0] + ubinv[0, 1] * z1[1] + ubinv[0, 2] * z1[2]
|
||||
k = ubinv[1, 0] * z1[0] + ubinv[1, 1] * z1[1] + ubinv[1, 2] * z1[2]
|
||||
l = ubinv[2, 0] * z1[0] + ubinv[2, 1] * z1[1] + ubinv[2, 2] * z1[2]
|
||||
|
||||
print("The Miller indexes are:", h, k, l)
|
||||
|
||||
ch2, ph2 = eqchph(z1)
|
||||
ch, ph, ga, om = fixdnu(wave, z1, ch2, ph2, nu)
|
||||
|
||||
print(
|
||||
"Bisecting angles to put reflection into the detector center: ga=",
|
||||
ga,
|
||||
", om=",
|
||||
om,
|
||||
", ch=",
|
||||
ch,
|
||||
", ph=",
|
||||
ph,
|
||||
", nu=",
|
||||
nu,
|
||||
)
|
||||
|
||||
|
||||
|
||||
def ang2hkl(wave, ddist, gammad, om, ch, ph, nud, ub, x, y):
|
||||
"""Calculate hkl-indices of a reflection from its position (x,y,angles) at the 2d-detector
|
||||
"""
|
||||
@ -340,6 +388,7 @@ def ang2hkl(wave, ddist, gammad, om, ch, ph, nud, ub, x, y):
|
||||
|
||||
return hkl
|
||||
|
||||
|
||||
def gauss(x, *p):
|
||||
"""Defines Gaussian function
|
||||
|
||||
@ -348,11 +397,12 @@ def gauss(x, *p):
|
||||
|
||||
Returns:
|
||||
Gaussian function
|
||||
"""
|
||||
"""
|
||||
A, mu, sigma = p
|
||||
return A*np.exp(-(x-mu)**2/(2.*sigma**2))
|
||||
|
||||
def box_int(file,box):
|
||||
return A * np.exp(-((x - mu) ** 2) / (2.0 * sigma ** 2))
|
||||
|
||||
|
||||
def box_int(file, box):
|
||||
"""Calculates center of the peak in the NB-geometry angles and Intensity of the peak
|
||||
|
||||
Args:
|
||||
@ -360,74 +410,74 @@ def box_int(file,box):
|
||||
|
||||
Returns:
|
||||
gamma, omPeak, nu polar angles, Int and data for 3 fit plots
|
||||
"""
|
||||
"""
|
||||
|
||||
dat=pyzebra.read_detector_data(file)
|
||||
|
||||
sttC=dat["pol_angle"][0]
|
||||
om=dat["rot_angle"]
|
||||
nuC=dat["tlt_angle"][0]
|
||||
ddist=dat["ddist"]
|
||||
dat = pyzebra.read_detector_data(file)
|
||||
|
||||
# defining indices
|
||||
sttC = dat["pol_angle"][0]
|
||||
om = dat["rot_angle"]
|
||||
nuC = dat["tlt_angle"][0]
|
||||
ddist = dat["ddist"]
|
||||
|
||||
# defining indices
|
||||
i0, j0, iN, jN, fr0, frN = box
|
||||
|
||||
# omega fit
|
||||
om=dat["rot_angle"][fr0:frN]
|
||||
cnts = np.sum(dat["data"][fr0:frN,j0:jN,i0:iN], axis=(1,2))
|
||||
# omega fit
|
||||
om = dat["rot_angle"][fr0:frN]
|
||||
cnts = np.sum(dat["data"][fr0:frN, j0:jN, i0:iN], axis=(1, 2))
|
||||
|
||||
p0 = [1., 0., 1.]
|
||||
coeff, var_matrix = curve_fit(gauss, range(len(cnts)), cnts, p0=p0)
|
||||
p0 = [1.0, 0.0, 1.0]
|
||||
coeff, var_matrix = curve_fit(gauss, range(len(cnts)), cnts, p0=p0)
|
||||
|
||||
frC = fr0+coeff[1]
|
||||
frC = fr0 + coeff[1]
|
||||
omF = dat["rot_angle"][math.floor(frC)]
|
||||
omC = dat["rot_angle"][math.ceil(frC)]
|
||||
frStep = frC-math.floor(frC)
|
||||
omStep = omC-omF
|
||||
omP = omF + omStep*frStep
|
||||
Int = coeff[1]*abs(coeff[2]*omStep)*math.sqrt(2)*math.sqrt(np.pi)
|
||||
# omega plot
|
||||
frStep = frC - math.floor(frC)
|
||||
omStep = omC - omF
|
||||
omP = omF + omStep * frStep
|
||||
Int = coeff[1] * abs(coeff[2] * omStep) * math.sqrt(2) * math.sqrt(np.pi)
|
||||
# omega plot
|
||||
x_fit = np.linspace(0, len(cnts), 100)
|
||||
y_fit = gauss(x_fit, *coeff)
|
||||
plt.figure()
|
||||
plt.subplot(131)
|
||||
plt.plot(range(len(cnts)), cnts)
|
||||
plt.plot(x_fit, y_fit)
|
||||
plt.ylabel('Intensity in the box')
|
||||
plt.xlabel('Frame N of the box')
|
||||
label='om'
|
||||
# gamma fit
|
||||
sliceXY = dat["data"][fr0:frN,j0:jN,i0:iN]
|
||||
sliceXZ = np.sum(sliceXY,axis=1)
|
||||
sliceYZ = np.sum(sliceXY,axis=2)
|
||||
plt.ylabel("Intensity in the box")
|
||||
plt.xlabel("Frame N of the box")
|
||||
label = "om"
|
||||
# gamma fit
|
||||
sliceXY = dat["data"][fr0:frN, j0:jN, i0:iN]
|
||||
sliceXZ = np.sum(sliceXY, axis=1)
|
||||
sliceYZ = np.sum(sliceXY, axis=2)
|
||||
|
||||
projX = np.sum(sliceXZ, axis=0)
|
||||
p0 = [1., 0., 1.]
|
||||
p0 = [1.0, 0.0, 1.0]
|
||||
coeff, var_matrix = curve_fit(gauss, range(len(projX)), projX, p0=p0)
|
||||
x= i0+coeff[1]
|
||||
# gamma plot
|
||||
x = i0 + coeff[1]
|
||||
# gamma plot
|
||||
x_fit = np.linspace(0, len(projX), 100)
|
||||
y_fit = gauss(x_fit, *coeff)
|
||||
plt.subplot(132)
|
||||
plt.plot(range(len(projX)), projX)
|
||||
plt.plot(x_fit, y_fit)
|
||||
plt.ylabel('Intensity in the box')
|
||||
plt.xlabel('X-pixel of the box')
|
||||
plt.ylabel("Intensity in the box")
|
||||
plt.xlabel("X-pixel of the box")
|
||||
|
||||
# nu fit
|
||||
# nu fit
|
||||
projY = np.sum(sliceYZ, axis=0)
|
||||
p0 = [1., 0., 1.]
|
||||
p0 = [1.0, 0.0, 1.0]
|
||||
coeff, var_matrix = curve_fit(gauss, range(len(projY)), projY, p0=p0)
|
||||
y= j0+coeff[1]
|
||||
# nu plot
|
||||
y = j0 + coeff[1]
|
||||
# nu plot
|
||||
x_fit = np.linspace(0, len(projY), 100)
|
||||
y_fit = gauss(x_fit, *coeff)
|
||||
plt.subplot(133)
|
||||
plt.plot(range(len(projY)), projY)
|
||||
plt.plot(x_fit, y_fit)
|
||||
plt.ylabel('Intensity in the box')
|
||||
plt.xlabel('Y-pixel of the box')
|
||||
plt.ylabel("Intensity in the box")
|
||||
plt.xlabel("Y-pixel of the box")
|
||||
|
||||
ga, nu = pyzebra.det2pol(ddist,sttC,nuC,x,y)
|
||||
|
||||
return ga[0], omP, nu[0], Int # x0,y0,x0_fit,y0_fit,x1,y1,x1_fit,y1_fit,x2,y2,x2_fit,y2_fit
|
||||
ga, nu = pyzebra.det2pol(ddist, sttC, nuC, x, y)
|
||||
|
||||
return ga[0], omP, nu[0], Int
|
||||
|
Loading…
x
Reference in New Issue
Block a user