Merge branch 'det1d'
This commit is contained in:
commit
4ae8890bb8
@ -67,8 +67,8 @@ def export_comm(data, path, lorentz=False):
|
||||
line = (
|
||||
scan_number_str
|
||||
+ h_str
|
||||
+ l_str
|
||||
+ k_str
|
||||
+ l_str
|
||||
+ int_str
|
||||
+ sigma_str
|
||||
+ angle_str1
|
||||
|
167
pyzebra/fitvol3.py
Normal file
167
pyzebra/fitvol3.py
Normal file
@ -0,0 +1,167 @@
|
||||
import numpy as np
|
||||
from lmfit import Model, Parameters
|
||||
from scipy.integrate import simps
|
||||
import matplotlib.pyplot as plt
|
||||
import uncertainties as u
|
||||
from lmfit.models import GaussianModel
|
||||
from lmfit.models import VoigtModel
|
||||
from lmfit.models import PseudoVoigtModel
|
||||
|
||||
|
||||
def bin_data(array, binsize):
|
||||
if isinstance(binsize, int) and 0 < binsize < len(array):
|
||||
return [
|
||||
np.mean(array[binsize * i : binsize * i + binsize])
|
||||
for i in range(int(np.ceil(len(array) / binsize)))
|
||||
]
|
||||
else:
|
||||
print("Binsize need to be positive integer smaller than lenght of array")
|
||||
return array
|
||||
|
||||
|
||||
def create_uncertanities(y, y_err):
|
||||
# create array with uncertanities for error propagation
|
||||
combined = np.array([])
|
||||
for i in range(len(y)):
|
||||
part = u.ufloat(y[i], y_err[i])
|
||||
combined = np.append(combined, part)
|
||||
return combined
|
||||
|
||||
|
||||
def find_nearest(array, value):
|
||||
# find nearest value and return index
|
||||
array = np.asarray(array)
|
||||
idx = (np.abs(array - value)).argmin()
|
||||
return idx
|
||||
|
||||
|
||||
# predefined peak positions
|
||||
# peaks = [6.2, 8.1, 9.9, 11.5]
|
||||
peaks = [23.5, 24.5]
|
||||
# peaks = [24]
|
||||
def fitccl(scan, variable="om", peak_type="gauss", binning=None):
|
||||
|
||||
x = list(scan[variable])
|
||||
y = list(scan["Counts"])
|
||||
peak_centre = np.mean(x)
|
||||
if binning is None or binning == 0 or binning == 1:
|
||||
x = list(scan["om"])
|
||||
y = list(scan["Counts"])
|
||||
y_err = list(np.sqrt(y)) if scan.get("sigma", None) is None else list(scan["sigma"])
|
||||
print(scan["peak_indexes"])
|
||||
if not scan["peak_indexes"]:
|
||||
peak_centre = np.mean(x)
|
||||
else:
|
||||
centre = x[int(scan["peak_indexes"])]
|
||||
else:
|
||||
x = list(scan["om"])
|
||||
if not scan["peak_indexes"]:
|
||||
peak_centre = np.mean(x)
|
||||
else:
|
||||
peak_centre = x[int(scan["peak_indexes"])]
|
||||
x = bin_data(x, binning)
|
||||
y = list(scan["Counts"])
|
||||
y_err = list(np.sqrt(y)) if scan.get("sigma", None) is None else list(scan["sigma"])
|
||||
combined = bin_data(create_uncertanities(y, y_err), binning)
|
||||
y = [combined[i].n for i in range(len(combined))]
|
||||
y_err = [combined[i].s for i in range(len(combined))]
|
||||
|
||||
def background(x, slope, intercept):
|
||||
"""background"""
|
||||
return slope * (x - peak_centre) + intercept
|
||||
|
||||
def gaussian(x, center, g_sigma, amplitude):
|
||||
"""1-d gaussian: gaussian(x, amp, cen, wid)"""
|
||||
return (amplitude / (np.sqrt(2.0 * np.pi) * g_sigma)) * np.exp(
|
||||
-((x - center) ** 2) / (2 * g_sigma ** 2)
|
||||
)
|
||||
|
||||
def lorentzian(x, center, l_sigma, amplitude):
|
||||
"""1d lorentzian"""
|
||||
return (amplitude / (1 + ((1 * x - center) / l_sigma) ** 2)) / (np.pi * l_sigma)
|
||||
|
||||
def pseudoVoigt1(x, center, g_sigma, amplitude, l_sigma, fraction):
|
||||
"""PseudoVoight peak with different widths of lorenzian and gaussian"""
|
||||
return (1 - fraction) * gaussian(x, center, g_sigma, amplitude) + fraction * (
|
||||
lorentzian(x, center, l_sigma, amplitude)
|
||||
)
|
||||
|
||||
mod = Model(background)
|
||||
params = Parameters()
|
||||
params.add_many(
|
||||
("slope", 0, True, None, None, None, None), ("intercept", 0, False, None, None, None, None)
|
||||
)
|
||||
for i in range(len(peaks)):
|
||||
if peak_type == "gauss":
|
||||
mod = mod + GaussianModel(prefix="p%d_" % (i + 1))
|
||||
params.add(str("p%d_" % (i + 1) + "amplitude"), 20, True, 0, None, None)
|
||||
params.add(str("p%d_" % (i + 1) + "center"), peaks[i], True, None, None, None)
|
||||
params.add(str("p%d_" % (i + 1) + "sigma"), 0.2, True, 0, 5, None)
|
||||
elif peak_type == "voigt":
|
||||
mod = mod + VoigtModel(prefix="p%d_" % (i + 1))
|
||||
params.add(str("p%d_" % (i + 1) + "amplitude"), 20, True, 0, None, None)
|
||||
params.add(str("p%d_" % (i + 1) + "center"), peaks[i], True, None, None, None)
|
||||
params.add(str("p%d_" % (i + 1) + "sigma"), 0.2, True, 0, 3, None)
|
||||
params.add(str("p%d_" % (i + 1) + "gamma"), 0.2, True, 0, 5, None)
|
||||
elif peak_type == "pseudovoigt":
|
||||
mod = mod + PseudoVoigtModel(prefix="p%d_" % (i + 1))
|
||||
params.add(str("p%d_" % (i + 1) + "amplitude"), 20, True, 0, None, None)
|
||||
params.add(str("p%d_" % (i + 1) + "center"), peaks[i], True, None, None, None)
|
||||
params.add(str("p%d_" % (i + 1) + "sigma"), 0.2, True, 0, 5, None)
|
||||
params.add(str("p%d_" % (i + 1) + "fraction"), 0.5, True, -5, 5, None)
|
||||
elif peak_type == "pseudovoigt1":
|
||||
mod = mod + Model(pseudoVoigt1, prefix="p%d_" % (i + 1))
|
||||
params.add(str("p%d_" % (i + 1) + "amplitude"), 20, True, 0, None, None)
|
||||
params.add(str("p%d_" % (i + 1) + "center"), peaks[i], True, None, None, None)
|
||||
params.add(str("p%d_" % (i + 1) + "g_sigma"), 0.2, True, 0, 5, None)
|
||||
params.add(str("p%d_" % (i + 1) + "l_sigma"), 0.2, True, 0, 5, None)
|
||||
params.add(str("p%d_" % (i + 1) + "fraction"), 0.5, True, 0, 1, None)
|
||||
# add parameters
|
||||
|
||||
result = mod.fit(
|
||||
y, params, weights=[np.abs(1 / y_err[i]) for i in range(len(y_err))], x=x, calc_covar=True
|
||||
)
|
||||
|
||||
comps = result.eval_components()
|
||||
|
||||
reportstring = list()
|
||||
for keys in result.params:
|
||||
if result.params[keys].value is not None:
|
||||
str2 = np.around(result.params[keys].value, 3)
|
||||
else:
|
||||
str2 = 0
|
||||
if result.params[keys].stderr is not None:
|
||||
str3 = np.around(result.params[keys].stderr, 3)
|
||||
else:
|
||||
str3 = 0
|
||||
reportstring.append("%s = %2.3f +/- %2.3f" % (keys, str2, str3))
|
||||
|
||||
reportstring = "\n".join(reportstring)
|
||||
|
||||
plt.figure(figsize=(20, 10))
|
||||
plt.plot(x, result.best_fit, "k-", label="Best fit")
|
||||
|
||||
plt.plot(x, y, "b-", label="Original data")
|
||||
plt.plot(x, comps["background"], "g--", label="Line component")
|
||||
for i in range(len(peaks)):
|
||||
plt.plot(
|
||||
x,
|
||||
comps[str("p%d_" % (i + 1))],
|
||||
"r--",
|
||||
)
|
||||
plt.fill_between(x, comps[str("p%d_" % (i + 1))], alpha=0.4, label=str("p%d_" % (i + 1)))
|
||||
plt.legend()
|
||||
plt.text(
|
||||
np.min(x),
|
||||
np.max(y),
|
||||
reportstring,
|
||||
fontsize=9,
|
||||
verticalalignment="top",
|
||||
)
|
||||
plt.title(str(peak_type))
|
||||
|
||||
plt.xlabel("Omega [deg]")
|
||||
plt.ylabel("Counts [a.u.]")
|
||||
plt.show()
|
||||
|
||||
print(result.fit_report())
|
@ -1,5 +1,4 @@
|
||||
from load_1D import load_1D
|
||||
from ccl_dict_operation import add_dict
|
||||
import pandas as pd
|
||||
from mpl_toolkits.mplot3d import Axes3D # dont delete, otherwise waterfall wont work
|
||||
import matplotlib.pyplot as plt
|
||||
@ -7,6 +6,17 @@ import matplotlib as mpl
|
||||
import numpy as np
|
||||
import pickle
|
||||
import scipy.io as sio
|
||||
import uncertainties as u
|
||||
|
||||
|
||||
def create_tuples(x, y, y_err):
|
||||
"""creates tuples for sorting and merginng of the data
|
||||
Counts need to be normalized to monitor before"""
|
||||
t = list()
|
||||
for i in range(len(x)):
|
||||
tup = (x[i], y[i], y_err[i])
|
||||
t.append(tup)
|
||||
return t
|
||||
|
||||
|
||||
def load_dats(filepath):
|
||||
@ -200,3 +210,174 @@ def save_table(data, filetype, name, path=None):
|
||||
hdf.close()
|
||||
if filetype == "json":
|
||||
data.to_json((path + name + ".json"))
|
||||
|
||||
def normalize(dict, key, monitor):
|
||||
"""Normalizes the measurement to monitor, checks if sigma exists, otherwise creates it
|
||||
:arg dict : dictionary to from which to tkae the scan
|
||||
:arg key : which scan to normalize from dict1
|
||||
:arg monitor : final monitor
|
||||
:return counts - normalized counts
|
||||
:return sigma - normalized sigma"""
|
||||
|
||||
counts = np.array(dict["scan"][key]["Counts"])
|
||||
sigma = np.sqrt(counts) if "sigma" not in dict["scan"][key] else dict["scan"][key]["sigma"]
|
||||
monitor_ratio = monitor / dict["scan"][key]["monitor"]
|
||||
scaled_counts = counts * monitor_ratio
|
||||
scaled_sigma = np.array(sigma) * monitor_ratio
|
||||
|
||||
return scaled_counts, scaled_sigma
|
||||
|
||||
def merge(dict1, dict2, scand_dict_result, keep=True, monitor=100000):
|
||||
"""merges the two tuples and sorts them, if om value is same, Counts value is average
|
||||
averaging is propagated into sigma if dict1 == dict2, key[1] is deleted after merging
|
||||
:arg dict1 : dictionary to which measurement will be merged
|
||||
:arg dict2 : dictionary from which measurement will be merged
|
||||
:arg scand_dict_result : result of scan_dict after auto function
|
||||
:arg keep : if true, when monitors are same, does not change it, if flase, takes monitor
|
||||
always
|
||||
:arg monitor : final monitor after merging
|
||||
note: dict1 and dict2 can be same dict
|
||||
:return dict1 with merged scan"""
|
||||
for keys in scand_dict_result:
|
||||
for j in range(len(scand_dict_result[keys])):
|
||||
first, second = scand_dict_result[keys][j][0], scand_dict_result[keys][j][1]
|
||||
print(first, second)
|
||||
if keep:
|
||||
if dict1["scan"][first]["monitor"] == dict2["scan"][second]["monitor"]:
|
||||
monitor = dict1["scan"][first]["monitor"]
|
||||
|
||||
# load om and Counts
|
||||
x1, x2 = dict1["scan"][first]["om"], dict2["scan"][second]["om"]
|
||||
cor_y1, y_err1 = normalize(dict1, first, monitor=monitor)
|
||||
cor_y2, y_err2 = normalize(dict2, second, monitor=monitor)
|
||||
# creates touples (om, Counts, sigma) for sorting and further processing
|
||||
tuple_list = create_tuples(x1, cor_y1, y_err1) + create_tuples(x2, cor_y2, y_err2)
|
||||
# Sort the list on om and add 0 0 0 tuple to the last position
|
||||
sorted_t = sorted(tuple_list, key=lambda tup: tup[0])
|
||||
sorted_t.append((0, 0, 0))
|
||||
om, Counts, sigma = [], [], []
|
||||
seen = list()
|
||||
for i in range(len(sorted_t) - 1):
|
||||
if sorted_t[i][0] not in seen:
|
||||
if sorted_t[i][0] != sorted_t[i + 1][0]:
|
||||
om = np.append(om, sorted_t[i][0])
|
||||
Counts = np.append(Counts, sorted_t[i][1])
|
||||
sigma = np.append(sigma, sorted_t[i][2])
|
||||
else:
|
||||
om = np.append(om, sorted_t[i][0])
|
||||
counts1, counts2 = sorted_t[i][1], sorted_t[i + 1][1]
|
||||
sigma1, sigma2 = sorted_t[i][2], sorted_t[i + 1][2]
|
||||
count_err1 = u.ufloat(counts1, sigma1)
|
||||
count_err2 = u.ufloat(counts2, sigma2)
|
||||
avg = (count_err1 + count_err2) / 2
|
||||
Counts = np.append(Counts, avg.n)
|
||||
sigma = np.append(sigma, avg.s)
|
||||
seen.append(sorted_t[i][0])
|
||||
else:
|
||||
continue
|
||||
|
||||
if dict1 == dict2:
|
||||
del dict1["scan"][second]
|
||||
|
||||
note = (
|
||||
f"This measurement was merged with measurement {second} from "
|
||||
f'file {dict2["meta"]["original_filename"]} \n'
|
||||
)
|
||||
if "notes" not in dict1["scan"][first]:
|
||||
dict1["scan"][first]["notes"] = note
|
||||
else:
|
||||
dict1["scan"][first]["notes"] += note
|
||||
|
||||
dict1["scan"][first]["om"] = om
|
||||
dict1["scan"][first]["Counts"] = Counts
|
||||
dict1["scan"][first]["sigma"] = sigma
|
||||
dict1["scan"][first]["monitor"] = monitor
|
||||
print("merging done")
|
||||
return dict1
|
||||
|
||||
|
||||
def add_dict(dict1, dict2):
|
||||
"""adds two dictionaries, meta of the new is saved as meata+original_filename and
|
||||
measurements are shifted to continue with numbering of first dict
|
||||
:arg dict1 : dictionarry to add to
|
||||
:arg dict2 : dictionarry from which to take the measurements
|
||||
:return dict1 : combined dictionary
|
||||
Note: dict1 must be made from ccl, otherwise we would have to change the structure of loaded
|
||||
dat file"""
|
||||
if dict1["meta"]["zebra_mode"] != dict2["meta"]["zebra_mode"]:
|
||||
print("You are trying to add scans measured with different zebra modes")
|
||||
return
|
||||
max_measurement_dict1 = max([keys for keys in dict1["scan"]])
|
||||
new_filenames = np.arange(
|
||||
max_measurement_dict1 + 1, max_measurement_dict1 + 1 + len(dict2["scan"])
|
||||
)
|
||||
new_meta_name = "meta" + str(dict2["meta"]["original_filename"])
|
||||
if new_meta_name not in dict1:
|
||||
for keys, name in zip(dict2["scan"], new_filenames):
|
||||
dict2["scan"][keys]["file_of_origin"] = str(dict2["meta"]["original_filename"])
|
||||
dict1["scan"][name] = dict2["scan"][keys]
|
||||
|
||||
dict1[new_meta_name] = dict2["meta"]
|
||||
else:
|
||||
raise KeyError(
|
||||
str(
|
||||
"The file %s has alredy been added to %s"
|
||||
% (dict2["meta"]["original_filename"], dict1["meta"]["original_filename"])
|
||||
)
|
||||
)
|
||||
return dict1
|
||||
|
||||
|
||||
def auto(dict):
|
||||
"""takes just unique tuples from all tuples in dictionary returend by scan_dict
|
||||
intendet for automatic merge if you doesent want to specify what scans to merge together
|
||||
args: dict - dictionary from scan_dict function
|
||||
:return dict - dict without repetitions"""
|
||||
for keys in dict:
|
||||
tuple_list = dict[keys]
|
||||
new = list()
|
||||
for i in range(len(tuple_list)):
|
||||
if tuple_list[0][0] == tuple_list[i][0]:
|
||||
new.append(tuple_list[i])
|
||||
dict[keys] = new
|
||||
return dict
|
||||
|
||||
|
||||
def scan_dict(dict, precision=0.5):
|
||||
"""scans dictionary for duplicate angles indexes
|
||||
:arg dict : dictionary to scan
|
||||
:arg precision : in deg, sometimes angles are zero so its easier this way, instead of
|
||||
checking zero division
|
||||
:return dictionary with matching scans, if there are none, the dict is empty
|
||||
note: can be checked by "not d", true if empty
|
||||
"""
|
||||
|
||||
if dict["meta"]["zebra_mode"] == "bi":
|
||||
angles = ["twotheta_angle", "omega_angle", "chi_angle", "phi_angle"]
|
||||
elif dict["meta"]["zebra_mode"] == "nb":
|
||||
angles = ["gamma_angle", "omega_angle", "nu_angle"]
|
||||
else:
|
||||
print("Unknown zebra mode")
|
||||
return
|
||||
|
||||
d = {}
|
||||
for i in dict["scan"]:
|
||||
for j in dict["scan"]:
|
||||
if dict["scan"][i] != dict["scan"][j]:
|
||||
itup = list()
|
||||
for k in angles:
|
||||
itup.append(abs(abs(dict["scan"][i][k]) - abs(dict["scan"][j][k])))
|
||||
|
||||
if all(i <= precision for i in itup):
|
||||
if str([np.around(dict["scan"][i][k], 1) for k in angles]) not in d:
|
||||
d[str([np.around(dict["scan"][i][k], 1) for k in angles])] = list()
|
||||
d[str([np.around(dict["scan"][i][k], 1) for k in angles])].append((i, j))
|
||||
else:
|
||||
d[str([np.around(dict["scan"][i][k], 1) for k in angles])].append((i, j))
|
||||
|
||||
else:
|
||||
pass
|
||||
|
||||
else:
|
||||
continue
|
||||
return d
|
||||
|
Loading…
x
Reference in New Issue
Block a user