Generalized fitting function

This is first idea how the function could work. Use should be the same as previous one but we need to find a way how to pass parameters to the function. There is a new parameter called variable, which should choose the x coordinate, since "om" might not be the only axis here. Function does not change the initial dictionary yet, but process will be the same as in the first one. It is still not clear how the peaks should be reported, more so what to report in case of two overlapping peaks (same goes for numerical integration), but the process will be similar to the fitvol2. The function can be used, but is posted here for a reason of discussion and finding the best way of passing the parameters.
This commit is contained in:
JakHolzer 2020-10-23 16:45:04 +02:00 committed by GitHub
parent 6ff1b2b54f
commit 430ffc2caa
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

167
pyzebra/fitvol3.py Normal file
View File

@ -0,0 +1,167 @@
import numpy as np
from lmfit import Model, Parameters
from scipy.integrate import simps
import matplotlib.pyplot as plt
import uncertainties as u
from lmfit.models import GaussianModel
from lmfit.models import VoigtModel
from lmfit.models import PseudoVoigtModel
def bin_data(array, binsize):
if isinstance(binsize, int) and 0 < binsize < len(array):
return [
np.mean(array[binsize * i : binsize * i + binsize])
for i in range(int(np.ceil(len(array) / binsize)))
]
else:
print("Binsize need to be positive integer smaller than lenght of array")
return array
def create_uncertanities(y, y_err):
# create array with uncertanities for error propagation
combined = np.array([])
for i in range(len(y)):
part = u.ufloat(y[i], y_err[i])
combined = np.append(combined, part)
return combined
def find_nearest(array, value):
# find nearest value and return index
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return idx
# predefined peak positions
# peaks = [6.2, 8.1, 9.9, 11.5]
peaks = [23.5, 24.5]
# peaks = [24]
def fitccl(scan, variable="om", peak_type="gauss", binning=None):
x = list(scan[variable])
y = list(scan["Counts"])
peak_centre = np.mean(x)
if binning is None or binning == 0 or binning == 1:
x = list(scan["om"])
y = list(scan["Counts"])
y_err = list(np.sqrt(y)) if scan.get("sigma", None) is None else list(scan["sigma"])
print(scan["peak_indexes"])
if not scan["peak_indexes"]:
peak_centre = np.mean(x)
else:
centre = x[int(scan["peak_indexes"])]
else:
x = list(scan["om"])
if not scan["peak_indexes"]:
peak_centre = np.mean(x)
else:
peak_centre = x[int(scan["peak_indexes"])]
x = bin_data(x, binning)
y = list(scan["Counts"])
y_err = list(np.sqrt(y)) if scan.get("sigma", None) is None else list(scan["sigma"])
combined = bin_data(create_uncertanities(y, y_err), binning)
y = [combined[i].n for i in range(len(combined))]
y_err = [combined[i].s for i in range(len(combined))]
def background(x, slope, intercept):
"""background"""
return slope * (x - peak_centre) + intercept
def gaussian(x, center, g_sigma, amplitude):
"""1-d gaussian: gaussian(x, amp, cen, wid)"""
return (amplitude / (np.sqrt(2.0 * np.pi) * g_sigma)) * np.exp(
-((x - center) ** 2) / (2 * g_sigma ** 2)
)
def lorentzian(x, center, l_sigma, amplitude):
"""1d lorentzian"""
return (amplitude / (1 + ((1 * x - center) / l_sigma) ** 2)) / (np.pi * l_sigma)
def pseudoVoigt1(x, center, g_sigma, amplitude, l_sigma, fraction):
"""PseudoVoight peak with different widths of lorenzian and gaussian"""
return (1 - fraction) * gaussian(x, center, g_sigma, amplitude) + fraction * (
lorentzian(x, center, l_sigma, amplitude)
)
mod = Model(background)
params = Parameters()
params.add_many(
("slope", 0, True, None, None, None, None), ("intercept", 0, False, None, None, None, None)
)
for i in range(len(peaks)):
if peak_type == "gauss":
mod = mod + GaussianModel(prefix="p%d_" % (i + 1))
params.add(str("p%d_" % (i + 1) + "amplitude"), 20, True, 0, None, None)
params.add(str("p%d_" % (i + 1) + "center"), peaks[i], True, None, None, None)
params.add(str("p%d_" % (i + 1) + "sigma"), 0.2, True, 0, 5, None)
elif peak_type == "voigt":
mod = mod + VoigtModel(prefix="p%d_" % (i + 1))
params.add(str("p%d_" % (i + 1) + "amplitude"), 20, True, 0, None, None)
params.add(str("p%d_" % (i + 1) + "center"), peaks[i], True, None, None, None)
params.add(str("p%d_" % (i + 1) + "sigma"), 0.2, True, 0, 3, None)
params.add(str("p%d_" % (i + 1) + "gamma"), 0.2, True, 0, 5, None)
elif peak_type == "pseudovoigt":
mod = mod + PseudoVoigtModel(prefix="p%d_" % (i + 1))
params.add(str("p%d_" % (i + 1) + "amplitude"), 20, True, 0, None, None)
params.add(str("p%d_" % (i + 1) + "center"), peaks[i], True, None, None, None)
params.add(str("p%d_" % (i + 1) + "sigma"), 0.2, True, 0, 5, None)
params.add(str("p%d_" % (i + 1) + "fraction"), 0.5, True, -5, 5, None)
elif peak_type == "pseudovoigt1":
mod = mod + Model(pseudoVoigt1, prefix="p%d_" % (i + 1))
params.add(str("p%d_" % (i + 1) + "amplitude"), 20, True, 0, None, None)
params.add(str("p%d_" % (i + 1) + "center"), peaks[i], True, None, None, None)
params.add(str("p%d_" % (i + 1) + "g_sigma"), 0.2, True, 0, 5, None)
params.add(str("p%d_" % (i + 1) + "l_sigma"), 0.2, True, 0, 5, None)
params.add(str("p%d_" % (i + 1) + "fraction"), 0.5, True, 0, 1, None)
# add parameters
result = mod.fit(
y, params, weights=[np.abs(1 / y_err[i]) for i in range(len(y_err))], x=x, calc_covar=True
)
comps = result.eval_components()
reportstring = list()
for keys in result.params:
if result.params[keys].value is not None:
str2 = np.around(result.params[keys].value, 3)
else:
str2 = 0
if result.params[keys].stderr is not None:
str3 = np.around(result.params[keys].stderr, 3)
else:
str3 = 0
reportstring.append("%s = %2.3f +/- %2.3f" % (keys, str2, str3))
reportstring = "\n".join(reportstring)
plt.figure(figsize=(20, 10))
plt.plot(x, result.best_fit, "k-", label="Best fit")
plt.plot(x, y, "b-", label="Original data")
plt.plot(x, comps["background"], "g--", label="Line component")
for i in range(len(peaks)):
plt.plot(
x,
comps[str("p%d_" % (i + 1))],
"r--",
)
plt.fill_between(x, comps[str("p%d_" % (i + 1))], alpha=0.4, label=str("p%d_" % (i + 1)))
plt.legend()
plt.text(
np.min(x),
np.max(y),
reportstring,
fontsize=9,
verticalalignment="top",
)
plt.title(str(peak_type))
plt.xlabel("Omega [deg]")
plt.ylabel("Counts [a.u.]")
plt.show()
print(result.fit_report())