Improve intensity estimation for marker sizes
This commit is contained in:
parent
e563666373
commit
18d5bec842
@ -29,6 +29,7 @@ from bokeh.models import (
|
|||||||
)
|
)
|
||||||
from bokeh.palettes import Dark2
|
from bokeh.palettes import Dark2
|
||||||
from bokeh.plotting import figure
|
from bokeh.plotting import figure
|
||||||
|
from scipy.integrate import simpson, trapezoid
|
||||||
|
|
||||||
import pyzebra
|
import pyzebra
|
||||||
from pyzebra import app
|
from pyzebra import app
|
||||||
@ -401,6 +402,8 @@ def create():
|
|||||||
print(f"Error loading {md_fname}")
|
print(f"Error loading {md_fname}")
|
||||||
return
|
return
|
||||||
|
|
||||||
|
pyzebra.normalize_dataset(file_data)
|
||||||
|
|
||||||
# Loop throguh all data
|
# Loop throguh all data
|
||||||
for scan in file_data:
|
for scan in file_data:
|
||||||
om = scan["omega"]
|
om = scan["omega"]
|
||||||
@ -410,7 +413,6 @@ def create():
|
|||||||
nud = 0 # 1d detector
|
nud = 0 # 1d detector
|
||||||
ub = scan["ub"]
|
ub = scan["ub"]
|
||||||
counts = scan["counts"]
|
counts = scan["counts"]
|
||||||
mon = scan["monitor"]
|
|
||||||
wave = scan["wavelength"]
|
wave = scan["wavelength"]
|
||||||
|
|
||||||
# Calculate resolution in degrees
|
# Calculate resolution in degrees
|
||||||
@ -436,14 +438,9 @@ def create():
|
|||||||
hkl_m = ang2hkl_1d(wave, gammad, om[np.argmax(counts)], chi, phi, nud, ub)
|
hkl_m = ang2hkl_1d(wave, gammad, om[np.argmax(counts)], chi, phi, nud, ub)
|
||||||
|
|
||||||
# Estimate intensity for marker size scaling
|
# Estimate intensity for marker size scaling
|
||||||
y1 = counts[0]
|
y_bkg = [counts[0], counts[-1]]
|
||||||
y2 = counts[-1]
|
x_bkg = [om[0], om[-1]]
|
||||||
x1 = om[0]
|
c = int(simpson(counts, x=om) - trapezoid(y_bkg, x=x_bkg))
|
||||||
x2 = om[-1]
|
|
||||||
a = (y1 - y2) / (x1 - x2)
|
|
||||||
b = y1 - a * x1
|
|
||||||
intensity_exp = np.sum(counts - (a * om + b))
|
|
||||||
c = int(intensity_exp / mon * 10000)
|
|
||||||
|
|
||||||
# Recognize k_flag_vec
|
# Recognize k_flag_vec
|
||||||
reduced_hkl_m = np.minimum(1 - hkl_m % 1, hkl_m % 1)
|
reduced_hkl_m = np.minimum(1 - hkl_m % 1, hkl_m % 1)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user