diff --git a/pyzebra/app/panel_ccl_integrate.py b/pyzebra/app/panel_ccl_integrate.py index 808f144..c46b7ac 100644 --- a/pyzebra/app/panel_ccl_integrate.py +++ b/pyzebra/app/panel_ccl_integrate.py @@ -135,7 +135,7 @@ def create(): append_upload_button.on_change("value", append_upload_button_callback) def _update_table(): - num_of_peaks = [scan.get("num_of_peaks", 0) for scan in det_data["scan"].values()] + num_of_peaks = [len(scan.get("peak_indexes", [])) for scan in det_data["scan"].values()] fit_ok = [(1 if "fit" in scan else 0) for scan in det_data["scan"].values()] scan_table_source.data.update(peaks=num_of_peaks, fit=fit_ok) @@ -148,7 +148,7 @@ def create(): plot_scatter_source.data.update(x=x, y=y, y_upper=y + np.sqrt(y), y_lower=y - np.sqrt(y)) - num_of_peaks = scan.get("num_of_peaks") + num_of_peaks = len(scan.get("peak_indexes", [])) if num_of_peaks is not None and num_of_peaks > 0: peak_indexes = scan["peak_indexes"] if len(peak_indexes) == 1: @@ -288,7 +288,6 @@ def create(): if new is not None and not peak_pos_textinput_lock: scan = _get_selected_scan() - scan["num_of_peaks"] = 1 peak_ind = (np.abs(scan["om"] - float(new))).argmin() scan["peak_indexes"] = np.array([peak_ind], dtype=np.int64) scan["peak_heights"] = np.array([scan["smooth_peaks"][peak_ind]]) diff --git a/pyzebra/ccl_findpeaks.py b/pyzebra/ccl_findpeaks.py index aecb85d..43054ee 100644 --- a/pyzebra/ccl_findpeaks.py +++ b/pyzebra/ccl_findpeaks.py @@ -29,11 +29,6 @@ def ccl_findpeaks( window_size - window size for savgol filter, must be odd positive integer poly_order = order of the polynomial used in savgol filter, must be positive integer smaller than - window_size returns: dictionary with following structure: - D{M34{ 'num_of_peaks': 1, #num of peaks - 'peak_indexes': [20], # index of peaks in omega array - 'peak_heights': [90.], # height of the peaks (if data vere smoothed - its the heigh of the peaks in smoothed data) """ if not 0 <= int_threshold <= 1: int_threshold = 0.8 @@ -75,7 +70,6 @@ def ccl_findpeaks( peaks, properties = sc.signal.find_peaks( smooth_peaks, height=int_threshold * max(smooth_peaks), prominence=prominence ) - scan["num_of_peaks"] = len(peaks) scan["peak_indexes"] = peaks scan["peak_heights"] = properties["peak_heights"] scan["smooth_peaks"] = smooth_peaks # smoothed curve