Add hdf param study panel (based on hdf viewer)
This commit is contained in:
parent
639dc070c3
commit
089a0cf5ac
@ -8,6 +8,7 @@ from bokeh.models import Tabs, TextAreaInput
|
|||||||
|
|
||||||
import panel_ccl_integrate
|
import panel_ccl_integrate
|
||||||
import panel_hdf_anatric
|
import panel_hdf_anatric
|
||||||
|
import panel_hdf_param_study
|
||||||
import panel_hdf_viewer
|
import panel_hdf_viewer
|
||||||
import panel_param_study
|
import panel_param_study
|
||||||
import panel_spind
|
import panel_spind
|
||||||
@ -26,15 +27,18 @@ bokeh_logger.addHandler(bokeh_handler)
|
|||||||
bokeh_log_textareainput = TextAreaInput(title="server output:", height=150)
|
bokeh_log_textareainput = TextAreaInput(title="server output:", height=150)
|
||||||
|
|
||||||
# Final layout
|
# Final layout
|
||||||
tab_hdf_viewer = panel_hdf_viewer.create()
|
|
||||||
tab_hdf_anatric = panel_hdf_anatric.create()
|
|
||||||
tab_ccl_integrate = panel_ccl_integrate.create()
|
|
||||||
tab_param_study = panel_param_study.create()
|
|
||||||
tab_spind = panel_spind.create()
|
|
||||||
|
|
||||||
doc.add_root(
|
doc.add_root(
|
||||||
column(
|
column(
|
||||||
Tabs(tabs=[tab_hdf_viewer, tab_hdf_anatric, tab_ccl_integrate, tab_param_study, tab_spind]),
|
Tabs(
|
||||||
|
tabs=[
|
||||||
|
panel_hdf_viewer.create(),
|
||||||
|
panel_hdf_anatric.create(),
|
||||||
|
panel_ccl_integrate.create(),
|
||||||
|
panel_param_study.create(),
|
||||||
|
panel_hdf_param_study.create(),
|
||||||
|
panel_spind.create(),
|
||||||
|
]
|
||||||
|
),
|
||||||
row(stdout_textareainput, bokeh_log_textareainput, sizing_mode="scale_both"),
|
row(stdout_textareainput, bokeh_log_textareainput, sizing_mode="scale_both"),
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
816
pyzebra/app/panel_hdf_param_study.py
Normal file
816
pyzebra/app/panel_hdf_param_study.py
Normal file
@ -0,0 +1,816 @@
|
|||||||
|
import base64
|
||||||
|
import io
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from bokeh.events import MouseEnter
|
||||||
|
from bokeh.io import curdoc
|
||||||
|
from bokeh.layouts import column, gridplot, row
|
||||||
|
from bokeh.models import (
|
||||||
|
BasicTicker,
|
||||||
|
BoxEditTool,
|
||||||
|
BoxZoomTool,
|
||||||
|
Button,
|
||||||
|
CheckboxGroup,
|
||||||
|
ColumnDataSource,
|
||||||
|
DataRange1d,
|
||||||
|
DataTable,
|
||||||
|
Div,
|
||||||
|
FileInput,
|
||||||
|
Grid,
|
||||||
|
MultiSelect,
|
||||||
|
NumberFormatter,
|
||||||
|
HoverTool,
|
||||||
|
Image,
|
||||||
|
Line,
|
||||||
|
LinearAxis,
|
||||||
|
LinearColorMapper,
|
||||||
|
Panel,
|
||||||
|
PanTool,
|
||||||
|
Plot,
|
||||||
|
Range1d,
|
||||||
|
Rect,
|
||||||
|
ResetTool,
|
||||||
|
Select,
|
||||||
|
Slider,
|
||||||
|
Spacer,
|
||||||
|
Spinner,
|
||||||
|
TableColumn,
|
||||||
|
TextInput,
|
||||||
|
Title,
|
||||||
|
WheelZoomTool,
|
||||||
|
)
|
||||||
|
from bokeh.palettes import Cividis256, Greys256, Plasma256 # pylint: disable=E0611
|
||||||
|
from scipy.optimize import curve_fit
|
||||||
|
|
||||||
|
import pyzebra
|
||||||
|
|
||||||
|
IMAGE_W = 256
|
||||||
|
IMAGE_H = 128
|
||||||
|
IMAGE_PLOT_W = int(IMAGE_W * 2) + 52
|
||||||
|
IMAGE_PLOT_H = int(IMAGE_H * 2) + 27
|
||||||
|
|
||||||
|
|
||||||
|
def create():
|
||||||
|
doc = curdoc()
|
||||||
|
det_data = {}
|
||||||
|
cami_meta = {}
|
||||||
|
|
||||||
|
num_formatter = NumberFormatter(format="0.00", nan_format="")
|
||||||
|
|
||||||
|
def file_select_update_for_proposal():
|
||||||
|
proposal = proposal_textinput.value.strip()
|
||||||
|
if not proposal:
|
||||||
|
return
|
||||||
|
|
||||||
|
for zebra_proposals_path in pyzebra.ZEBRA_PROPOSALS_PATHS:
|
||||||
|
proposal_path = os.path.join(zebra_proposals_path, proposal)
|
||||||
|
if os.path.isdir(proposal_path):
|
||||||
|
# found it
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Can not find data for proposal '{proposal}'.")
|
||||||
|
|
||||||
|
file_list = []
|
||||||
|
for file in os.listdir(proposal_path):
|
||||||
|
if file.endswith(".hdf"):
|
||||||
|
file_list.append((os.path.join(proposal_path, file), file))
|
||||||
|
file_select.options = file_list
|
||||||
|
|
||||||
|
doc.add_periodic_callback(file_select_update_for_proposal, 5000)
|
||||||
|
|
||||||
|
def proposal_textinput_callback(_attr, _old, _new):
|
||||||
|
nonlocal cami_meta
|
||||||
|
cami_meta = {}
|
||||||
|
file_select_update_for_proposal()
|
||||||
|
|
||||||
|
proposal_textinput = TextInput(title="Proposal number:", width=210)
|
||||||
|
proposal_textinput.on_change("value", proposal_textinput_callback)
|
||||||
|
|
||||||
|
def upload_button_callback(_attr, _old, new):
|
||||||
|
nonlocal cami_meta
|
||||||
|
proposal_textinput.value = ""
|
||||||
|
with io.StringIO(base64.b64decode(new).decode()) as file:
|
||||||
|
cami_meta = pyzebra.parse_h5meta(file)
|
||||||
|
file_list = cami_meta["filelist"]
|
||||||
|
file_select.options = [(entry, os.path.basename(entry)) for entry in file_list]
|
||||||
|
|
||||||
|
upload_div = Div(text="or upload .cami file:", margin=(5, 5, 0, 5))
|
||||||
|
upload_button = FileInput(accept=".cami", width=200)
|
||||||
|
upload_button.on_change("value", upload_button_callback)
|
||||||
|
|
||||||
|
def update_image(index=None):
|
||||||
|
if index is None:
|
||||||
|
index = index_spinner.value
|
||||||
|
|
||||||
|
current_image = det_data["data"][index]
|
||||||
|
proj_v_line_source.data.update(
|
||||||
|
x=np.arange(0, IMAGE_W) + 0.5, y=np.mean(current_image, axis=0)
|
||||||
|
)
|
||||||
|
proj_h_line_source.data.update(
|
||||||
|
x=np.mean(current_image, axis=1), y=np.arange(0, IMAGE_H) + 0.5
|
||||||
|
)
|
||||||
|
|
||||||
|
image_source.data.update(
|
||||||
|
h=[np.zeros((1, 1))], k=[np.zeros((1, 1))], l=[np.zeros((1, 1))],
|
||||||
|
)
|
||||||
|
image_source.data.update(image=[current_image])
|
||||||
|
|
||||||
|
if main_auto_checkbox.active:
|
||||||
|
im_min = np.min(current_image)
|
||||||
|
im_max = np.max(current_image)
|
||||||
|
|
||||||
|
display_min_spinner.value = im_min
|
||||||
|
display_max_spinner.value = im_max
|
||||||
|
|
||||||
|
image_glyph.color_mapper.low = im_min
|
||||||
|
image_glyph.color_mapper.high = im_max
|
||||||
|
|
||||||
|
if "mf" in det_data:
|
||||||
|
metadata_table_source.data.update(mf=[det_data["mf"][index]])
|
||||||
|
else:
|
||||||
|
metadata_table_source.data.update(mf=[None])
|
||||||
|
|
||||||
|
if "temp" in det_data:
|
||||||
|
metadata_table_source.data.update(temp=[det_data["temp"][index]])
|
||||||
|
else:
|
||||||
|
metadata_table_source.data.update(temp=[None])
|
||||||
|
|
||||||
|
gamma, nu = calculate_pol(det_data, index)
|
||||||
|
omega = np.ones((IMAGE_H, IMAGE_W)) * det_data["omega"][index]
|
||||||
|
image_source.data.update(gamma=[gamma], nu=[nu], omega=[omega])
|
||||||
|
|
||||||
|
def update_overview_plot():
|
||||||
|
h5_data = det_data["data"]
|
||||||
|
n_im, n_y, n_x = h5_data.shape
|
||||||
|
overview_x = np.mean(h5_data, axis=1)
|
||||||
|
overview_y = np.mean(h5_data, axis=2)
|
||||||
|
|
||||||
|
overview_plot_x_image_source.data.update(image=[overview_x], dw=[n_x], dh=[n_im])
|
||||||
|
overview_plot_y_image_source.data.update(image=[overview_y], dw=[n_y], dh=[n_im])
|
||||||
|
|
||||||
|
if proj_auto_checkbox.active:
|
||||||
|
im_min = min(np.min(overview_x), np.min(overview_y))
|
||||||
|
im_max = max(np.max(overview_x), np.max(overview_y))
|
||||||
|
|
||||||
|
proj_display_min_spinner.value = im_min
|
||||||
|
proj_display_max_spinner.value = im_max
|
||||||
|
|
||||||
|
overview_plot_x_image_glyph.color_mapper.low = im_min
|
||||||
|
overview_plot_y_image_glyph.color_mapper.low = im_min
|
||||||
|
overview_plot_x_image_glyph.color_mapper.high = im_max
|
||||||
|
overview_plot_y_image_glyph.color_mapper.high = im_max
|
||||||
|
|
||||||
|
frame_range.start = 0
|
||||||
|
frame_range.end = n_im
|
||||||
|
frame_range.reset_start = 0
|
||||||
|
frame_range.reset_end = n_im
|
||||||
|
frame_range.bounds = (0, n_im)
|
||||||
|
|
||||||
|
scan_motor = det_data["scan_motor"]
|
||||||
|
overview_plot_y.axis[1].axis_label = f"Scanning motor, {scan_motor}"
|
||||||
|
|
||||||
|
var = det_data[scan_motor]
|
||||||
|
var_start = var[0]
|
||||||
|
var_end = var[-1] + (var[-1] - var[0]) / (n_im - 1)
|
||||||
|
|
||||||
|
scanning_motor_range.start = var_start
|
||||||
|
scanning_motor_range.end = var_end
|
||||||
|
scanning_motor_range.reset_start = var_start
|
||||||
|
scanning_motor_range.reset_end = var_end
|
||||||
|
# handle both, ascending and descending sequences
|
||||||
|
scanning_motor_range.bounds = (min(var_start, var_end), max(var_start, var_end))
|
||||||
|
|
||||||
|
def file_select_callback(_attr, old, new):
|
||||||
|
nonlocal det_data
|
||||||
|
if not new:
|
||||||
|
# skip empty selections
|
||||||
|
return
|
||||||
|
|
||||||
|
# Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
|
||||||
|
if len(new) > 1:
|
||||||
|
# drop selection to the previous one
|
||||||
|
file_select.value = old
|
||||||
|
return
|
||||||
|
|
||||||
|
if len(old) > 1:
|
||||||
|
# skip unnecessary update caused by selection drop
|
||||||
|
return
|
||||||
|
|
||||||
|
det_data = pyzebra.read_detector_data(new[0], cami_meta)
|
||||||
|
|
||||||
|
index_spinner.value = 0
|
||||||
|
index_spinner.high = det_data["data"].shape[0] - 1
|
||||||
|
index_slider.end = det_data["data"].shape[0] - 1
|
||||||
|
|
||||||
|
zebra_mode = det_data["zebra_mode"]
|
||||||
|
if zebra_mode == "nb":
|
||||||
|
metadata_table_source.data.update(geom=["normal beam"])
|
||||||
|
else: # zebra_mode == "bi"
|
||||||
|
metadata_table_source.data.update(geom=["bisecting"])
|
||||||
|
|
||||||
|
update_image(0)
|
||||||
|
update_overview_plot()
|
||||||
|
|
||||||
|
file_select = MultiSelect(title="Available .hdf files:", width=210, height=250)
|
||||||
|
file_select.on_change("value", file_select_callback)
|
||||||
|
|
||||||
|
def index_callback(_attr, _old, new):
|
||||||
|
update_image(new)
|
||||||
|
|
||||||
|
index_slider = Slider(value=0, start=0, end=1, show_value=False, width=400)
|
||||||
|
|
||||||
|
index_spinner = Spinner(title="Image index:", value=0, low=0, width=100)
|
||||||
|
index_spinner.on_change("value", index_callback)
|
||||||
|
|
||||||
|
index_slider.js_link("value_throttled", index_spinner, "value")
|
||||||
|
index_spinner.js_link("value", index_slider, "value")
|
||||||
|
|
||||||
|
plot = Plot(
|
||||||
|
x_range=Range1d(0, IMAGE_W, bounds=(0, IMAGE_W)),
|
||||||
|
y_range=Range1d(0, IMAGE_H, bounds=(0, IMAGE_H)),
|
||||||
|
plot_height=IMAGE_PLOT_H,
|
||||||
|
plot_width=IMAGE_PLOT_W,
|
||||||
|
toolbar_location="left",
|
||||||
|
)
|
||||||
|
|
||||||
|
# ---- tools
|
||||||
|
plot.toolbar.logo = None
|
||||||
|
|
||||||
|
# ---- axes
|
||||||
|
plot.add_layout(LinearAxis(), place="above")
|
||||||
|
plot.add_layout(LinearAxis(major_label_orientation="vertical"), place="right")
|
||||||
|
|
||||||
|
# ---- grid lines
|
||||||
|
plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
||||||
|
plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
||||||
|
|
||||||
|
# ---- rgba image glyph
|
||||||
|
image_source = ColumnDataSource(
|
||||||
|
dict(
|
||||||
|
image=[np.zeros((IMAGE_H, IMAGE_W), dtype="float32")],
|
||||||
|
h=[np.zeros((1, 1))],
|
||||||
|
k=[np.zeros((1, 1))],
|
||||||
|
l=[np.zeros((1, 1))],
|
||||||
|
gamma=[np.zeros((1, 1))],
|
||||||
|
nu=[np.zeros((1, 1))],
|
||||||
|
omega=[np.zeros((1, 1))],
|
||||||
|
x=[0],
|
||||||
|
y=[0],
|
||||||
|
dw=[IMAGE_W],
|
||||||
|
dh=[IMAGE_H],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
h_glyph = Image(image="h", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
|
||||||
|
k_glyph = Image(image="k", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
|
||||||
|
l_glyph = Image(image="l", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
|
||||||
|
gamma_glyph = Image(image="gamma", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
|
||||||
|
nu_glyph = Image(image="nu", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
|
||||||
|
omega_glyph = Image(image="omega", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
|
||||||
|
|
||||||
|
plot.add_glyph(image_source, h_glyph)
|
||||||
|
plot.add_glyph(image_source, k_glyph)
|
||||||
|
plot.add_glyph(image_source, l_glyph)
|
||||||
|
plot.add_glyph(image_source, gamma_glyph)
|
||||||
|
plot.add_glyph(image_source, nu_glyph)
|
||||||
|
plot.add_glyph(image_source, omega_glyph)
|
||||||
|
|
||||||
|
image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
|
||||||
|
plot.add_glyph(image_source, image_glyph, name="image_glyph")
|
||||||
|
|
||||||
|
# calculate hkl-indices of first mouse entry
|
||||||
|
def mouse_enter_callback(_event):
|
||||||
|
if det_data and np.array_equal(image_source.data["h"][0], np.zeros((1, 1))):
|
||||||
|
index = index_spinner.value
|
||||||
|
h, k, l = calculate_hkl(det_data, index)
|
||||||
|
image_source.data.update(h=[h], k=[k], l=[l])
|
||||||
|
|
||||||
|
plot.on_event(MouseEnter, mouse_enter_callback)
|
||||||
|
|
||||||
|
# ---- projections
|
||||||
|
proj_v = Plot(
|
||||||
|
x_range=plot.x_range,
|
||||||
|
y_range=DataRange1d(),
|
||||||
|
plot_height=150,
|
||||||
|
plot_width=IMAGE_PLOT_W,
|
||||||
|
toolbar_location=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
proj_v.add_layout(LinearAxis(major_label_orientation="vertical"), place="right")
|
||||||
|
proj_v.add_layout(LinearAxis(major_label_text_font_size="0pt"), place="below")
|
||||||
|
|
||||||
|
proj_v.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
||||||
|
proj_v.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
||||||
|
|
||||||
|
proj_v_line_source = ColumnDataSource(dict(x=[], y=[]))
|
||||||
|
proj_v.add_glyph(proj_v_line_source, Line(x="x", y="y", line_color="steelblue"))
|
||||||
|
|
||||||
|
proj_h = Plot(
|
||||||
|
x_range=DataRange1d(),
|
||||||
|
y_range=plot.y_range,
|
||||||
|
plot_height=IMAGE_PLOT_H,
|
||||||
|
plot_width=150,
|
||||||
|
toolbar_location=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
proj_h.add_layout(LinearAxis(), place="above")
|
||||||
|
proj_h.add_layout(LinearAxis(major_label_text_font_size="0pt"), place="left")
|
||||||
|
|
||||||
|
proj_h.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
||||||
|
proj_h.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
||||||
|
|
||||||
|
proj_h_line_source = ColumnDataSource(dict(x=[], y=[]))
|
||||||
|
proj_h.add_glyph(proj_h_line_source, Line(x="x", y="y", line_color="steelblue"))
|
||||||
|
|
||||||
|
# add tools
|
||||||
|
hovertool = HoverTool(
|
||||||
|
tooltips=[
|
||||||
|
("intensity", "@image"),
|
||||||
|
("gamma", "@gamma"),
|
||||||
|
("nu", "@nu"),
|
||||||
|
("omega", "@omega"),
|
||||||
|
("h", "@h"),
|
||||||
|
("k", "@k"),
|
||||||
|
("l", "@l"),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
box_edit_source = ColumnDataSource(dict(x=[], y=[], width=[], height=[]))
|
||||||
|
box_edit_glyph = Rect(
|
||||||
|
x="x", y="y", width="width", height="height", fill_alpha=0, line_color="red"
|
||||||
|
)
|
||||||
|
box_edit_renderer = plot.add_glyph(box_edit_source, box_edit_glyph)
|
||||||
|
boxedittool = BoxEditTool(renderers=[box_edit_renderer], num_objects=1)
|
||||||
|
|
||||||
|
def box_edit_callback(_attr, _old, new):
|
||||||
|
if new["x"]:
|
||||||
|
h5_data = det_data["data"]
|
||||||
|
x_val = np.arange(h5_data.shape[0])
|
||||||
|
left = int(np.floor(new["x"][0]))
|
||||||
|
right = int(np.ceil(new["x"][0] + new["width"][0]))
|
||||||
|
bottom = int(np.floor(new["y"][0]))
|
||||||
|
top = int(np.ceil(new["y"][0] + new["height"][0]))
|
||||||
|
y_val = np.sum(h5_data[:, bottom:top, left:right], axis=(1, 2))
|
||||||
|
else:
|
||||||
|
x_val = []
|
||||||
|
y_val = []
|
||||||
|
|
||||||
|
roi_avg_plot_line_source.data.update(x=x_val, y=y_val)
|
||||||
|
|
||||||
|
box_edit_source.on_change("data", box_edit_callback)
|
||||||
|
|
||||||
|
wheelzoomtool = WheelZoomTool(maintain_focus=False)
|
||||||
|
plot.add_tools(
|
||||||
|
PanTool(), BoxZoomTool(), wheelzoomtool, ResetTool(), hovertool, boxedittool,
|
||||||
|
)
|
||||||
|
plot.toolbar.active_scroll = wheelzoomtool
|
||||||
|
|
||||||
|
# shared frame ranges
|
||||||
|
frame_range = Range1d(0, 1, bounds=(0, 1))
|
||||||
|
scanning_motor_range = Range1d(0, 1, bounds=(0, 1))
|
||||||
|
|
||||||
|
det_x_range = Range1d(0, IMAGE_W, bounds=(0, IMAGE_W))
|
||||||
|
overview_plot_x = Plot(
|
||||||
|
title=Title(text="Projections on X-axis"),
|
||||||
|
x_range=det_x_range,
|
||||||
|
y_range=frame_range,
|
||||||
|
extra_y_ranges={"scanning_motor": scanning_motor_range},
|
||||||
|
plot_height=400,
|
||||||
|
plot_width=IMAGE_PLOT_W - 3,
|
||||||
|
)
|
||||||
|
|
||||||
|
# ---- tools
|
||||||
|
wheelzoomtool = WheelZoomTool(maintain_focus=False)
|
||||||
|
overview_plot_x.toolbar.logo = None
|
||||||
|
overview_plot_x.add_tools(
|
||||||
|
PanTool(), BoxZoomTool(), wheelzoomtool, ResetTool(),
|
||||||
|
)
|
||||||
|
overview_plot_x.toolbar.active_scroll = wheelzoomtool
|
||||||
|
|
||||||
|
# ---- axes
|
||||||
|
overview_plot_x.add_layout(LinearAxis(axis_label="Coordinate X, pix"), place="below")
|
||||||
|
overview_plot_x.add_layout(
|
||||||
|
LinearAxis(axis_label="Frame", major_label_orientation="vertical"), place="left"
|
||||||
|
)
|
||||||
|
|
||||||
|
# ---- grid lines
|
||||||
|
overview_plot_x.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
||||||
|
overview_plot_x.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
||||||
|
|
||||||
|
# ---- rgba image glyph
|
||||||
|
overview_plot_x_image_source = ColumnDataSource(
|
||||||
|
dict(image=[np.zeros((1, 1), dtype="float32")], x=[0], y=[0], dw=[IMAGE_W], dh=[1])
|
||||||
|
)
|
||||||
|
|
||||||
|
overview_plot_x_image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
|
||||||
|
overview_plot_x.add_glyph(
|
||||||
|
overview_plot_x_image_source, overview_plot_x_image_glyph, name="image_glyph"
|
||||||
|
)
|
||||||
|
|
||||||
|
det_y_range = Range1d(0, IMAGE_H, bounds=(0, IMAGE_H))
|
||||||
|
overview_plot_y = Plot(
|
||||||
|
title=Title(text="Projections on Y-axis"),
|
||||||
|
x_range=det_y_range,
|
||||||
|
y_range=frame_range,
|
||||||
|
extra_y_ranges={"scanning_motor": scanning_motor_range},
|
||||||
|
plot_height=400,
|
||||||
|
plot_width=IMAGE_PLOT_H + 22,
|
||||||
|
)
|
||||||
|
|
||||||
|
# ---- tools
|
||||||
|
wheelzoomtool = WheelZoomTool(maintain_focus=False)
|
||||||
|
overview_plot_y.toolbar.logo = None
|
||||||
|
overview_plot_y.add_tools(
|
||||||
|
PanTool(), BoxZoomTool(), wheelzoomtool, ResetTool(),
|
||||||
|
)
|
||||||
|
overview_plot_y.toolbar.active_scroll = wheelzoomtool
|
||||||
|
|
||||||
|
# ---- axes
|
||||||
|
overview_plot_y.add_layout(LinearAxis(axis_label="Coordinate Y, pix"), place="below")
|
||||||
|
overview_plot_y.add_layout(
|
||||||
|
LinearAxis(
|
||||||
|
y_range_name="scanning_motor",
|
||||||
|
axis_label="Scanning motor",
|
||||||
|
major_label_orientation="vertical",
|
||||||
|
),
|
||||||
|
place="right",
|
||||||
|
)
|
||||||
|
|
||||||
|
# ---- grid lines
|
||||||
|
overview_plot_y.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
||||||
|
overview_plot_y.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
||||||
|
|
||||||
|
# ---- rgba image glyph
|
||||||
|
overview_plot_y_image_source = ColumnDataSource(
|
||||||
|
dict(image=[np.zeros((1, 1), dtype="float32")], x=[0], y=[0], dw=[IMAGE_H], dh=[1])
|
||||||
|
)
|
||||||
|
|
||||||
|
overview_plot_y_image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
|
||||||
|
overview_plot_y.add_glyph(
|
||||||
|
overview_plot_y_image_source, overview_plot_y_image_glyph, name="image_glyph"
|
||||||
|
)
|
||||||
|
|
||||||
|
roi_avg_plot = Plot(
|
||||||
|
x_range=DataRange1d(),
|
||||||
|
y_range=DataRange1d(),
|
||||||
|
plot_height=150,
|
||||||
|
plot_width=IMAGE_PLOT_W,
|
||||||
|
toolbar_location="left",
|
||||||
|
)
|
||||||
|
|
||||||
|
# ---- tools
|
||||||
|
roi_avg_plot.toolbar.logo = None
|
||||||
|
|
||||||
|
# ---- axes
|
||||||
|
roi_avg_plot.add_layout(LinearAxis(), place="below")
|
||||||
|
roi_avg_plot.add_layout(LinearAxis(major_label_orientation="vertical"), place="left")
|
||||||
|
|
||||||
|
# ---- grid lines
|
||||||
|
roi_avg_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
|
||||||
|
roi_avg_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))
|
||||||
|
|
||||||
|
roi_avg_plot_line_source = ColumnDataSource(dict(x=[], y=[]))
|
||||||
|
roi_avg_plot.add_glyph(roi_avg_plot_line_source, Line(x="x", y="y", line_color="steelblue"))
|
||||||
|
|
||||||
|
cmap_dict = {
|
||||||
|
"gray": Greys256,
|
||||||
|
"gray_reversed": Greys256[::-1],
|
||||||
|
"plasma": Plasma256,
|
||||||
|
"cividis": Cividis256,
|
||||||
|
}
|
||||||
|
|
||||||
|
def colormap_callback(_attr, _old, new):
|
||||||
|
image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
|
||||||
|
overview_plot_x_image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
|
||||||
|
overview_plot_y_image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
|
||||||
|
|
||||||
|
colormap = Select(title="Colormap:", options=list(cmap_dict.keys()), width=210)
|
||||||
|
colormap.on_change("value", colormap_callback)
|
||||||
|
colormap.value = "plasma"
|
||||||
|
|
||||||
|
STEP = 1
|
||||||
|
|
||||||
|
def main_auto_checkbox_callback(state):
|
||||||
|
if state:
|
||||||
|
display_min_spinner.disabled = True
|
||||||
|
display_max_spinner.disabled = True
|
||||||
|
else:
|
||||||
|
display_min_spinner.disabled = False
|
||||||
|
display_max_spinner.disabled = False
|
||||||
|
|
||||||
|
update_image()
|
||||||
|
|
||||||
|
main_auto_checkbox = CheckboxGroup(
|
||||||
|
labels=["Frame Intensity Range"], active=[0], width=145, margin=[10, 5, 0, 5]
|
||||||
|
)
|
||||||
|
main_auto_checkbox.on_click(main_auto_checkbox_callback)
|
||||||
|
|
||||||
|
def display_max_spinner_callback(_attr, _old_value, new_value):
|
||||||
|
display_min_spinner.high = new_value - STEP
|
||||||
|
image_glyph.color_mapper.high = new_value
|
||||||
|
|
||||||
|
display_max_spinner = Spinner(
|
||||||
|
low=0 + STEP,
|
||||||
|
value=1,
|
||||||
|
step=STEP,
|
||||||
|
disabled=bool(main_auto_checkbox.active),
|
||||||
|
width=100,
|
||||||
|
height=31,
|
||||||
|
)
|
||||||
|
display_max_spinner.on_change("value", display_max_spinner_callback)
|
||||||
|
|
||||||
|
def display_min_spinner_callback(_attr, _old_value, new_value):
|
||||||
|
display_max_spinner.low = new_value + STEP
|
||||||
|
image_glyph.color_mapper.low = new_value
|
||||||
|
|
||||||
|
display_min_spinner = Spinner(
|
||||||
|
low=0,
|
||||||
|
high=1 - STEP,
|
||||||
|
value=0,
|
||||||
|
step=STEP,
|
||||||
|
disabled=bool(main_auto_checkbox.active),
|
||||||
|
width=100,
|
||||||
|
height=31,
|
||||||
|
)
|
||||||
|
display_min_spinner.on_change("value", display_min_spinner_callback)
|
||||||
|
|
||||||
|
PROJ_STEP = 0.1
|
||||||
|
|
||||||
|
def proj_auto_checkbox_callback(state):
|
||||||
|
if state:
|
||||||
|
proj_display_min_spinner.disabled = True
|
||||||
|
proj_display_max_spinner.disabled = True
|
||||||
|
else:
|
||||||
|
proj_display_min_spinner.disabled = False
|
||||||
|
proj_display_max_spinner.disabled = False
|
||||||
|
|
||||||
|
update_overview_plot()
|
||||||
|
|
||||||
|
proj_auto_checkbox = CheckboxGroup(
|
||||||
|
labels=["Projections Intensity Range"], active=[0], width=145, margin=[10, 5, 0, 5]
|
||||||
|
)
|
||||||
|
proj_auto_checkbox.on_click(proj_auto_checkbox_callback)
|
||||||
|
|
||||||
|
def proj_display_max_spinner_callback(_attr, _old_value, new_value):
|
||||||
|
proj_display_min_spinner.high = new_value - PROJ_STEP
|
||||||
|
overview_plot_x_image_glyph.color_mapper.high = new_value
|
||||||
|
overview_plot_y_image_glyph.color_mapper.high = new_value
|
||||||
|
|
||||||
|
proj_display_max_spinner = Spinner(
|
||||||
|
low=0 + PROJ_STEP,
|
||||||
|
value=1,
|
||||||
|
step=PROJ_STEP,
|
||||||
|
disabled=bool(proj_auto_checkbox.active),
|
||||||
|
width=100,
|
||||||
|
height=31,
|
||||||
|
)
|
||||||
|
proj_display_max_spinner.on_change("value", proj_display_max_spinner_callback)
|
||||||
|
|
||||||
|
def proj_display_min_spinner_callback(_attr, _old_value, new_value):
|
||||||
|
proj_display_max_spinner.low = new_value + PROJ_STEP
|
||||||
|
overview_plot_x_image_glyph.color_mapper.low = new_value
|
||||||
|
overview_plot_y_image_glyph.color_mapper.low = new_value
|
||||||
|
|
||||||
|
proj_display_min_spinner = Spinner(
|
||||||
|
low=0,
|
||||||
|
high=1 - PROJ_STEP,
|
||||||
|
value=0,
|
||||||
|
step=PROJ_STEP,
|
||||||
|
disabled=bool(proj_auto_checkbox.active),
|
||||||
|
width=100,
|
||||||
|
height=31,
|
||||||
|
)
|
||||||
|
proj_display_min_spinner.on_change("value", proj_display_min_spinner_callback)
|
||||||
|
|
||||||
|
events_data = dict(
|
||||||
|
wave=[],
|
||||||
|
ddist=[],
|
||||||
|
cell=[],
|
||||||
|
frame=[],
|
||||||
|
x_pos=[],
|
||||||
|
y_pos=[],
|
||||||
|
intensity=[],
|
||||||
|
snr_cnts=[],
|
||||||
|
gamma=[],
|
||||||
|
omega=[],
|
||||||
|
chi=[],
|
||||||
|
phi=[],
|
||||||
|
nu=[],
|
||||||
|
)
|
||||||
|
doc.events_data = events_data
|
||||||
|
|
||||||
|
events_table_source = ColumnDataSource(events_data)
|
||||||
|
events_table = DataTable(
|
||||||
|
source=events_table_source,
|
||||||
|
columns=[
|
||||||
|
TableColumn(field="frame", title="Frame", formatter=num_formatter, width=70),
|
||||||
|
TableColumn(field="x_pos", title="X", formatter=num_formatter, width=70),
|
||||||
|
TableColumn(field="y_pos", title="Y", formatter=num_formatter, width=70),
|
||||||
|
TableColumn(field="intensity", title="Intensity", formatter=num_formatter, width=70),
|
||||||
|
TableColumn(field="gamma", title="Gamma", formatter=num_formatter, width=70),
|
||||||
|
TableColumn(field="omega", title="Omega", formatter=num_formatter, width=70),
|
||||||
|
TableColumn(field="chi", title="Chi", formatter=num_formatter, width=70),
|
||||||
|
TableColumn(field="phi", title="Phi", formatter=num_formatter, width=70),
|
||||||
|
TableColumn(field="nu", title="Nu", formatter=num_formatter, width=70),
|
||||||
|
],
|
||||||
|
height=150,
|
||||||
|
width=630,
|
||||||
|
autosize_mode="none",
|
||||||
|
index_position=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
def add_event_button_callback():
|
||||||
|
p0 = [1.0, 0.0, 1.0]
|
||||||
|
maxfev = 100000
|
||||||
|
|
||||||
|
wave = det_data["wave"]
|
||||||
|
ddist = det_data["ddist"]
|
||||||
|
cell = det_data["cell"]
|
||||||
|
|
||||||
|
gamma = det_data["gamma"][0]
|
||||||
|
omega = det_data["omega"][0]
|
||||||
|
nu = det_data["nu"][0]
|
||||||
|
chi = det_data["chi"][0]
|
||||||
|
phi = det_data["phi"][0]
|
||||||
|
|
||||||
|
scan_motor = det_data["scan_motor"]
|
||||||
|
var_angle = det_data[scan_motor]
|
||||||
|
|
||||||
|
x0 = int(np.floor(det_x_range.start))
|
||||||
|
xN = int(np.ceil(det_x_range.end))
|
||||||
|
y0 = int(np.floor(det_y_range.start))
|
||||||
|
yN = int(np.ceil(det_y_range.end))
|
||||||
|
fr0 = int(np.floor(frame_range.start))
|
||||||
|
frN = int(np.ceil(frame_range.end))
|
||||||
|
data_roi = det_data["data"][fr0:frN, y0:yN, x0:xN]
|
||||||
|
|
||||||
|
cnts = np.sum(data_roi, axis=(1, 2))
|
||||||
|
coeff, _ = curve_fit(gauss, range(len(cnts)), cnts, p0=p0, maxfev=maxfev)
|
||||||
|
|
||||||
|
m = cnts.mean()
|
||||||
|
sd = cnts.std()
|
||||||
|
snr_cnts = np.where(sd == 0, 0, m / sd)
|
||||||
|
|
||||||
|
frC = fr0 + coeff[1]
|
||||||
|
var_F = var_angle[math.floor(frC)]
|
||||||
|
var_C = var_angle[math.ceil(frC)]
|
||||||
|
frStep = frC - math.floor(frC)
|
||||||
|
var_step = var_C - var_F
|
||||||
|
var_p = var_F + var_step * frStep
|
||||||
|
|
||||||
|
if scan_motor == "gamma":
|
||||||
|
gamma = var_p
|
||||||
|
elif scan_motor == "omega":
|
||||||
|
omega = var_p
|
||||||
|
elif scan_motor == "nu":
|
||||||
|
nu = var_p
|
||||||
|
elif scan_motor == "chi":
|
||||||
|
chi = var_p
|
||||||
|
elif scan_motor == "phi":
|
||||||
|
phi = var_p
|
||||||
|
|
||||||
|
intensity = coeff[1] * abs(coeff[2] * var_step) * math.sqrt(2) * math.sqrt(np.pi)
|
||||||
|
|
||||||
|
projX = np.sum(data_roi, axis=(0, 1))
|
||||||
|
coeff, _ = curve_fit(gauss, range(len(projX)), projX, p0=p0, maxfev=maxfev)
|
||||||
|
x_pos = x0 + coeff[1]
|
||||||
|
|
||||||
|
projY = np.sum(data_roi, axis=(0, 2))
|
||||||
|
coeff, _ = curve_fit(gauss, range(len(projY)), projY, p0=p0, maxfev=maxfev)
|
||||||
|
y_pos = y0 + coeff[1]
|
||||||
|
|
||||||
|
events_data["wave"].append(wave)
|
||||||
|
events_data["ddist"].append(ddist)
|
||||||
|
events_data["cell"].append(cell)
|
||||||
|
events_data["frame"].append(frC)
|
||||||
|
events_data["x_pos"].append(x_pos)
|
||||||
|
events_data["y_pos"].append(y_pos)
|
||||||
|
events_data["intensity"].append(intensity)
|
||||||
|
events_data["snr_cnts"].append(snr_cnts)
|
||||||
|
events_data["gamma"].append(gamma)
|
||||||
|
events_data["omega"].append(omega)
|
||||||
|
events_data["chi"].append(chi)
|
||||||
|
events_data["phi"].append(phi)
|
||||||
|
events_data["nu"].append(nu)
|
||||||
|
|
||||||
|
events_table_source.data = events_data
|
||||||
|
|
||||||
|
add_event_button = Button(label="Add spind event", width=145)
|
||||||
|
add_event_button.on_click(add_event_button_callback)
|
||||||
|
|
||||||
|
def remove_event_button_callback():
|
||||||
|
ind2remove = events_table_source.selected.indices
|
||||||
|
for value in events_data.values():
|
||||||
|
for ind in reversed(ind2remove):
|
||||||
|
del value[ind]
|
||||||
|
|
||||||
|
events_table_source.data = events_data
|
||||||
|
|
||||||
|
remove_event_button = Button(label="Remove spind event", width=145)
|
||||||
|
remove_event_button.on_click(remove_event_button_callback)
|
||||||
|
|
||||||
|
metadata_table_source = ColumnDataSource(dict(geom=[""], temp=[None], mf=[None]))
|
||||||
|
metadata_table = DataTable(
|
||||||
|
source=metadata_table_source,
|
||||||
|
columns=[
|
||||||
|
TableColumn(field="geom", title="Geometry", width=100),
|
||||||
|
TableColumn(field="temp", title="Temperature", formatter=num_formatter, width=100),
|
||||||
|
TableColumn(field="mf", title="Magnetic Field", formatter=num_formatter, width=100),
|
||||||
|
],
|
||||||
|
width=300,
|
||||||
|
height=50,
|
||||||
|
autosize_mode="none",
|
||||||
|
index_position=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Final layout
|
||||||
|
import_layout = column(proposal_textinput, upload_div, upload_button, file_select)
|
||||||
|
layout_image = column(gridplot([[proj_v, None], [plot, proj_h]], merge_tools=False))
|
||||||
|
colormap_layout = column(
|
||||||
|
colormap,
|
||||||
|
main_auto_checkbox,
|
||||||
|
row(display_min_spinner, display_max_spinner),
|
||||||
|
proj_auto_checkbox,
|
||||||
|
row(proj_display_min_spinner, proj_display_max_spinner),
|
||||||
|
)
|
||||||
|
|
||||||
|
layout_controls = column(
|
||||||
|
row(metadata_table, index_spinner, column(Spacer(height=25), index_slider)),
|
||||||
|
row(column(add_event_button, remove_event_button), events_table),
|
||||||
|
)
|
||||||
|
|
||||||
|
layout_overview = column(
|
||||||
|
gridplot(
|
||||||
|
[[overview_plot_x, overview_plot_y]],
|
||||||
|
toolbar_options=dict(logo=None),
|
||||||
|
merge_tools=True,
|
||||||
|
toolbar_location="left",
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
tab_layout = row(
|
||||||
|
column(import_layout, colormap_layout),
|
||||||
|
column(layout_overview, layout_controls),
|
||||||
|
column(roi_avg_plot, layout_image),
|
||||||
|
)
|
||||||
|
|
||||||
|
return Panel(child=tab_layout, title="hdf param study")
|
||||||
|
|
||||||
|
|
||||||
|
def gauss(x, *p):
|
||||||
|
"""Defines Gaussian function
|
||||||
|
Args:
|
||||||
|
A - amplitude, mu - position of the center, sigma - width
|
||||||
|
Returns:
|
||||||
|
Gaussian function
|
||||||
|
"""
|
||||||
|
A, mu, sigma = p
|
||||||
|
return A * np.exp(-((x - mu) ** 2) / (2.0 * sigma ** 2))
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_hkl(det_data, index):
|
||||||
|
h = np.empty(shape=(IMAGE_H, IMAGE_W))
|
||||||
|
k = np.empty(shape=(IMAGE_H, IMAGE_W))
|
||||||
|
l = np.empty(shape=(IMAGE_H, IMAGE_W))
|
||||||
|
|
||||||
|
wave = det_data["wave"]
|
||||||
|
ddist = det_data["ddist"]
|
||||||
|
gammad = det_data["gamma"][index]
|
||||||
|
om = det_data["omega"][index]
|
||||||
|
nud = det_data["nu"]
|
||||||
|
ub = det_data["ub"]
|
||||||
|
geometry = det_data["zebra_mode"]
|
||||||
|
|
||||||
|
if geometry == "bi":
|
||||||
|
chi = det_data["chi"][index]
|
||||||
|
phi = det_data["phi"][index]
|
||||||
|
elif geometry == "nb":
|
||||||
|
chi = 0
|
||||||
|
phi = 0
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unknown geometry type '{geometry}'")
|
||||||
|
|
||||||
|
for xi in np.arange(IMAGE_W):
|
||||||
|
for yi in np.arange(IMAGE_H):
|
||||||
|
h[yi, xi], k[yi, xi], l[yi, xi] = pyzebra.ang2hkl(
|
||||||
|
wave, ddist, gammad, om, chi, phi, nud, ub, xi, yi
|
||||||
|
)
|
||||||
|
|
||||||
|
return h, k, l
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_pol(det_data, index):
|
||||||
|
gamma = np.empty(shape=(IMAGE_H, IMAGE_W))
|
||||||
|
nu = np.empty(shape=(IMAGE_H, IMAGE_W))
|
||||||
|
|
||||||
|
ddist = det_data["ddist"]
|
||||||
|
gammad = det_data["gamma"][index]
|
||||||
|
nud = det_data["nu"]
|
||||||
|
|
||||||
|
for xi in np.arange(IMAGE_W):
|
||||||
|
for yi in np.arange(IMAGE_H):
|
||||||
|
gamma[yi, xi], nu[yi, xi] = pyzebra.det2pol(ddist, gammad, nud, xi, yi)
|
||||||
|
|
||||||
|
return gamma, nu
|
Loading…
x
Reference in New Issue
Block a user