added conversion E <-> K instead of calibration curve

This commit is contained in:
2021-01-30 22:46:21 +01:00
parent f0a81fd5b9
commit 3575208d89

View File

@ -1,6 +1,6 @@
from time import sleep
import numpy as np
from scipy.interpolate import Akima1DInterpolator as Akima
#from scipy.interpolate import Akima1DInterpolator as Akima
from epics import PV
from slic.core.adjustable import Adjustable
@ -18,31 +18,31 @@ und_names = [f"SATUN{n:02}-UIND030" for n in n_unds]
und_name_cal = "SATUN12-UIND030"
energies = [
0.5457977557372193,
0.5429495415906611,
0.5401552739843691,
0.537355500731781,
0.534605067464375,
0.5318574959825555,
0.5291128804749312,
0.5264167029579244,
0.5237231992520139,
0.5210645197823921,
]
#energies = [
# 0.5457977557372193,
# 0.5429495415906611,
# 0.5401552739843691,
# 0.537355500731781,
# 0.534605067464375,
# 0.5318574959825555,
# 0.5291128804749312,
# 0.5264167029579244,
# 0.5237231992520139,
# 0.5210645197823921,
#]
k_values = [
2.673,
2.681888888888889,
2.690777777777778,
2.699666666666667,
2.708555555555556,
2.7174444444444443,
2.7263333333333333,
2.735222222222222,
2.744111111111111,
2.753,
]
#k_values = [
# 2.673,
# 2.681888888888889,
# 2.690777777777778,
# 2.699666666666667,
# 2.708555555555556,
# 2.7174444444444443,
# 2.7263333333333333,
# 2.735222222222222,
# 2.744111111111111,
# 2.753,
#]
#energies = [
@ -116,16 +116,14 @@ k_values = [
class Undulators(Adjustable):
def __init__(self, energies=energies, k_values=k_values):
super().__init__(name="Athos Undulators")
def __init__(self):
super().__init__(name="Athos Undulators", units="eV")
self.adjs = {name: Undulator(name) for name in und_names}
self.eV_to_K = make_calib(energies, k_values)
self.K_to_eV = make_calib(k_values, energies)
self.convert = ConverterEK()
def set_target_value(self, value, hold=False):
value /= 1000 # eV -> keV
k = self.eV_to_K(value)
k = self.convert.K(value)
if np.isnan(k):
print("K is nan for", value)
return
@ -146,7 +144,7 @@ class Undulators(Adjustable):
def get_current_value(self):
a = self.adjs[und_name_cal]
k = a.get_current_value()
energy = self.K_to_eV(k)
energy = self.convert.E(k)
all_ks = [a.get_current_value() for a in self.adjs.values()]
checks = np.isclose(all_ks, k, rtol=0, atol=0.001)
@ -156,7 +154,7 @@ class Undulators(Adjustable):
if not chk:
print(name, k)
return float(energy) * 1000 # keV -> eV
return energy
def is_moving(self):
@ -174,41 +172,73 @@ class Undulator(PVAdjustable):
def make_calib(x, y):
x, y = list(zip(*sorted(zip(x, y))))
return Akima(x, y)
#def make_calib(x, y):
# x, y = list(zip(*sorted(zip(x, y))))
# return Akima(x, y)
def get_map(k_min=min(k_values), k_max=max(k_values)):
und = Undulator(und_name_cal)
start_k_value = und.get_current_value()
#def get_map(k_min=min(k_values), k_max=max(k_values)):
# und = Undulator(und_name_cal)
# start_k_value = und.get_current_value()
k_values = np.linspace(k_min, k_max, 10)
energies = []
print()
print("mapping = {")
for k in k_values:
und.set_target_value(k).wait()
energy = und.energy.get_current_value()
print(f" {energy}: {k},")
energies.append(energy)
print("}")
energies = np.array(energies)
# k_values = np.linspace(k_min, k_max, 10)
# energies = []
# print()
# print("mapping = {")
# for k in k_values:
# und.set_target_value(k).wait()
# energy = und.energy.get_current_value()
# print(f" {energy}: {k},")
# energies.append(energy)
# print("}")
# energies = np.array(energies)
print()
print("energies = [")
for energy in energies:
print(f" {energy},")
print("]")
# print()
# print("energies = [")
# for energy in energies:
# print(f" {energy},")
# print("]")
print()
print("k_values = [")
for k in k_values:
print(f" {k},")
print("]")
# print()
# print("k_values = [")
# for k in k_values:
# print(f" {k},")
# print("]")
und.set_target_value(start_k_value).wait()
return energies, k_values
# und.set_target_value(start_k_value).wait()
# return energies, k_values
class ConverterEK:
h = 4.135667696e-15 # eV * s
c = 299792458 # m / s
lambda_u = 38e-3 # m
const = 2 * h * c / lambda_u # eV
electron_rest_energy = 0.51099895 # MeV
def __init__(self, pvname_electron_energy="SATCL01-MBND100:P-READ"):
self.pv_electron_energy = PV(pvname_electron_energy)
def K(self, energy):
f = self.get_factor()
v = f / energy - 1
return np.sqrt(2 * v)
def E(self, k_value):
f = self.get_factor()
v = 1 + k_value**2 / 2
return f / v
def get_factor(self):
return self.const * self.get_gamma_squared()
def get_gamma_squared(self):
electron_energy = self.pv_electron_energy.get()
gamma = electron_energy / self.electron_rest_energy
return gamma**2