#!/usr/bin/env python import sys import os from loguru import logger # at the moment this allows us to group the subdirectories as modules easily # TODO: a more general way would be to have this cristallina as a installed package os.chdir("/sf/cristallina/applications/slic/cristallina") def setup_general_logging(): """Setup logging to console and files in both the snapshots and the respective pgroup. """ logger.remove() logger.add( sys.stderr, format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}", level="INFO", ) logger.info("Loading started.") # create file handler which logs try: logger.add( "/sf/cristallina/applications/beamline/snapshots/slic_logs/cristallina.log", format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}", level="DEBUG", rotation="1 week", ) logger.info("Logging to snapshots.") except PermissionError as e: logger.warning("Cannot write log file to snapshots.") logger.warning(e) def setup_logging_pgroup(pgroup, level="INFO"): try: logger.add( f"/sf/cristallina/data/{pgroup}/scratch/slic.log", format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}", level=level, rotation="1 week", ) logger.info(f"Logging to pgroup {pgroup}.") except PermissionError as e: logger.warning(f"Cannot write log file to pgroup {pgroup}.") # We setup the logging before going further so that # other modules can write startup messages into the log file. setup_general_logging() from beamline.alignment_laser import AlignmentLaser from slic.gui import GUI from slic.core.adjustable import Adjustable, PVAdjustable, DummyAdjustable from slic.core.acquisition import SFAcquisition, PVAcquisition from slic.core.condition import PVCondition from slic.core.scanner import Scanner from slic.devices.general.motor import Motor from slic.utils import devices, Marker, as_shortcut, snapshot from slic.utils import Channels, Config, Elog, Screenshot, PV from slic.core.acquisition.fakeacquisition import FakeAcquisition from channels.bs_channels import ( detectors, detectors_MX, bs_channels, camera_channels, ) from channels.pv_channels import pv_channels from spreadsheet import overview from channels.bs_channels import bs_channels_bernina_DCM from channels.pv_channels import pv_channels_bernina_DCM from channels.bs_channels import bs_channels_cristallina_beamline from channels.pv_channels import pv_channels_cristallina_beamline # from channels_minimal import detectors_min, channels_min, pvs_min ################# DEVICES ################# dummy = DummyAdjustable(units="au") dummy2 = DummyAdjustable(ID='DUMMY2', name='Dummy2', units="au") # from devices.knife_edge import KnifeEdge # from devices.standa import standa # from devices.newport import newport from beamline.components import ( upstream_attenuator, attenuator, pp_shutter, pulsepicker, alignment_laser, pbps113, slits107,slits149,slitsi0, mono, m3, i0, ) from beamline.components import kbHor, kbVer from systems.components import cta from gp_exp.components import Newport_large, OWIS, slitsjj # Undulators from beamline import undulator undulators = undulator.Undulators() logger.info(f"Using undulator (Aramis) offset to PSSS energy of {undulator.energy_offset} eV.") # Undulators & mono from beamline import photon_energy cr_photon_energy = photon_energy.PhotonEnergy() logger.info(f"Photon energy offsets: PSSS {photon_energy.energy_offset_PSSS} eV , DCCM {photon_energy.energy_offset_DCCM} eV, undulator {photon_energy.energy_offset_undulators} eV.") # Pulse picker shutter #pp_shutter = PP_Shutter( # "SARES30-LTIM01-EVR0:RearUniv0-Ena-SP", name="Cristallina pulse picker shutter" #) # Shutter buttton when using the pulse picker ## Slits from slic.devices.xoptics import slits ## Smaract & attocube stages from gp_exp.smaract_device_def import smaract_Juraj, smaract_mini_XYZ # from gp_exp.attocube_device_def import attocube # disabled fbecause of issues with Adjustables from gp_exp.jj_device_def import jjslits # Bernina monochromator from beamline.bernina_mono import BerninaMono BerninaDCM = BerninaMono("SAROP21-ODCM098") # Diffractometer from crq_exp.diffractometer import Diffractometer dm1 = Diffractometer("SARES31-GPS") dm2 = Diffractometer("SARES32-GPS") # Set according to which diffractometer is being used diffractometer = dm1 # Dilution fridge #from crq_exp.dilsc import Dilution try: dilution = Dilution() except Exception as e: logger.warning(f"Error: Could not connect to dilution fridge. {e}") dilution = None # MX adajustables # import mx.mx_adjustables # Temporary quick hack thermometer addition for stand #TODO: make in a thermometer class ... T_reg = PVAdjustable('SARES31-DIL-LS1:A_KELVIN') T_plato = PVAdjustable('SARES31-DIL-LS1:7_KELVIN') T_chip = PVAdjustable('SARES31-DIL-LS1:8_KELVIN') ################# Stand setup ################## # TODO: requires the stand client, need small howto how to start and configure or let it run all the time from slic.core.acquisition.spreadsheet import Spreadsheet from stand.time import Time adjs_for_spreadsheet = { "Time": str(Time()), "T_reg": T_reg, "T_plato": T_plato, "T_chip":T_chip, "Transmission": attenuator.trans1st, "Upstream Transmission": upstream_attenuator.trans1st, "Energy_setpoint": cr_photon_energy, "Energy_offset undulator": photon_energy.energy_offset_undulators, "TD": diffractometer.td, "TRX": diffractometer.tr_x, "TRY": diffractometer.tr_y, "TRXBASE": diffractometer.trx_base, "TRYBASE": diffractometer.try_base, "THETA": diffractometer.theta, "TWOTHETA": diffractometer.twotheta, } if dilution is not None: adjs_dilsc = { #"Magnet_X": dilution.x, #"Magnet_Y": dilution.y, #"Magnet_Z": dilution.z, "DilSc_T_chip": T_chip, "DilSc_T_plato": T_plato, #"DilSc_T_chip": dilution.T_chip, "DilSc_T_pucksensor": T_reg, } adjs_for_spreadsheet.update(adjs_dilsc) # temporary mono from exp_temp.mono import Mono_rotation # setup spreadsheet for transmission to stand spreadsheet = Spreadsheet( adjs_for_spreadsheet, placeholders=("comment", "sample", "run_usable"), host="saresc-vcons-02.psi.ch", port=9090, ) try: from stand.client import Client stand_host = "saresc-vcons-02.psi.ch" stand_client = Client(host=stand_host, port=9090) response = stand_client.get() logger.info("Connected to stand server") except Exception as error: # catching excpetions with a broad net because different connection errors can occur. logger.warning(f"Cannot connect to stand server on {stand_host}. Disabling spreadsheet.") spreadsheet = None # spreadsheet = Spreadsheet(adjs, placeholders=PLACEHOLDERS, host="127.0.0.1", port=8080)) ################# DAQ Setup ################# instrument = "cristallina" # experiment_type = "MX" # "MX" or "Q" for the different setups and detector configurations experiment_type = "Q" # "MX" or "Q" for the different setups and detector configurations from pgroups import pgroup, pgroup_scratch # setup pgroup specific logger setup_logging_pgroup(pgroup) logger.info(f"Using Cristallina{experiment_type} setup for detectors.") if experiment_type == "MX": daq = SFAcquisition( instrument, pgroup, default_channels=bs_channels, default_pvs=pv_channels, default_detectors=detectors_MX, rate_multiplicator=1, spreadsheet=spreadsheet, ) elif experiment_type == "Q": daq = SFAcquisition( instrument, pgroup, default_channels=bs_channels, default_pvs=pv_channels, default_detectors=detectors, rate_multiplicator=1, spreadsheet=spreadsheet, ) else: logger.error(f"Experiment type {experiment_type} not supported. Exiting.") sys.exit(1) # default_channels=bs_channels, # default_pvs=pv_channels, daq.update_config_pvs() # There is a new EPICS buffer, so the archiver is no longer used. This makes sure we are taking PVs from the right place. try: daq.update_config_pvs() except Exception as e: print(e) from acquisition import multiple_daqs DAQS = multiple_daqs.generate_DAQS(instrument, pgroup, bs_channels, pv_channels, detectors, spreadsheet) # daq_fake = FakeAcquisition(instrument, pgroup) # daq_PV_only = PVAcquisition(instrument, pgroup, default_channels=channels_ks) # workaround for KS not going to DB # Run the scan only when gas monitor value larger than 10uJ (and smaller than 2000uJ): # required fraction defines ammount of data recorded to save the step and move on to the next one check_intensity_gas_monitor = PVCondition( "SARFE10-PBPG050:PHOTON-ENERGY-PER-PULSE-US", vmin=100, vmax=2000, wait_time=0.5, required_fraction=0.8, ) scan = Scanner(default_acquisitions=[daq], condition=None) gui = GUI(scan, show_goto=True, show_spec=True) from exp_temp import SAT logger.info(f"Running at {instrument} with pgroup {pgroup}. Experiment type: {experiment_type}.") logger.info("Loading finished.")