Files
alvra/adhoc.py

440 lines
14 KiB
Python

import numpy as np
from types import SimpleNamespace
from time import sleep
from epics import PV
from devices import *
from slic.core.acquisition import SFAcquisition
from slic.core.adjustable import Adjustable, PVAdjustable
from slic.core.device import Device, SimpleDevice
from slic.devices.general.motor import Motor
from slic.devices.general.delay_stage import DelayStage
from slic.devices.general.smaract import SmarActAxis
from slic.devices.general.shutter import Shutter
from slic.devices.xoptics.dcm import CoupledDoubleCrystalMonoEnergyWithTimeCorrection
from slic.core.sensor.bsmonitor import BSMonitor
from undulator import Undulators
ENERGY_OFFSET = -73.96501094395626 #-66.4807232884632 #-38.796532199490684 #-23.690679364204698 #-67.41724724743653 #-43.50130133659968 #-8.549246528231379 #-12.61393032963997 # -6.627670970333838 #-58.996124615499866 #set the mono-undulators energy offset here!
#s_diode_light = BSSensor("Diode", "SARES11-LSCP10-FNS:CH1:VAL_GET")
#s_i0 = BSSensor("I0", "SAROP11-PBPS122:INTENSITY")
#s_diode_dark = BSSensor("Diode", "SARES11-LSCP10-FNS:CH1:VAL_GET")
#s_i0 = BSSensor("I0", "SAROP11-PBPS122:INTENSITY")
#s = Norm("PP", s_diode, s_i0)
#s_bs = BSNorm("PP", "SARES11-LSCP10-FNS:CH1:VAL_GET", "SAROP11-PBPS122:INTENSITY")
class PP(BSMonitor):
def __init__(self,
ID = "PP",
evtmap = "SAR-CVME-TIFALL4:EvtSet",
diode = "SARES11-LSCP10-FNS:CH1:VAL_GET",
i0 = "SAROP11-PBPS122:INTENSITY",
**kwargs
):
self.cn_evtmap = evtmap
self.cn_diode = diode
self.cn_i0 = i0
chs = (self.cn_evtmap, self.cn_diode, self.cn_i0)
super().__init__(ID, chs, **kwargs)
self.cache_light = []
self.cache_dark = []
def get_aggregate(self):
return np.mean(self.cache_light) - np.mean(self.cache_dark)
def _unpack(self, data):
evtmap = data[self.cn_evtmap]
diode = data[self.cn_diode]
i0 = data[self.cn_i0]
value = diode / i0
cond_light = cond_check(evtmap)
if cond_light:
light = self.cache_light[-1]
dark = value
else:
dark = self.cache_dark[-1]
light = value
return light - dark
def _collect(self, data):
if data is None:
return
evtmap = data[self.cn_evtmap]
diode = data[self.cn_diode]
i0 = data[self.cn_i0]
value = diode / i0
cond_light = cond_check(evtmap)
if cond_light:
self.cache_light.append(value)
else:
self.cache_dark.append(value)
def cond_check(self, evtmap):
fel = evtmap[13]
laser = evtmap[18]
darkshot = evtmap[21]
return np.logical_and.reduce((fel, laser, np.logical_not(darkshot)))
def _clear(self):
self.cache_light.clear()
self.cache_dark.clear()
#pp = PP()
laser_pitch = SmarActAxis("SARES11-XICM125:ROX1")
laser_trans = SmarActAxis("SARES11-XICM125:TRX1")
laser_yaw = SmarActAxis("SARES11-XICM125:ROY1")
microscope_pitch = SmarActAxis("SARES11-XMI125:ROY1")
microscope_yaw = SmarActAxis("SARES11-XMI125:ROZ1")
#laser_mod = PVAdjustable("SIN-TIMAST-TMA:Evt-23-Off-SP", process_time=1, name="Laser Mod")
CDCMEWTC = CoupledDoubleCrystalMonoEnergyWithTimeCorrection(limit_low=2450, limit_high=2520)
PSSS = Motor("SARFE10-PSSS059:MOTOR_Y3", name="PSSS XTAL y")
#opo_delay = PVAdjustable("SLAAR03-LTIM-PDLY:DELAY", name="OPO Delay")
XrayShutter = Shutter("SARFE10-OPSH059")
import requests
class UndulatorEnergy(PVAdjustable):
def __init__(self, process_time=1):
self.process_time = process_time
super().__init__("SARUN:USER-DELTA", "SARUN07-UIND030:FELPHOTENE", process_time=0.2) # process_time here is only to insert the delta into the panel
# assert self.units == "keV"
print('units={}'.format(self.units))
self.units = "eV"
def set_target_value(self, value):
#value /= 1000
current = self.get_current_value()
delta = (value - current)
print(f"delta: {value} - {current} = {delta}")
delta /= 1000
task = super().set_target_value(delta)
sleep(0.1)
# task.wait() # make sure the delta is set correctly
#TODO: the following should be a task?
url_go = "http://sf-daq-mgmt.psi.ch:8090/run/Undulators/K_AR_scale"
reply = requests.get(url_go)#.json()
print('Pressing "GO" produced:', reply)
sleep(self.process_time) # wait for undulator change
return task
def get_current_value(self):
value = super().get_current_value() - 0.02037
value *= 1000
return value
def stop(self):
url_abort = "http://sf-daq-mgmt.psi.ch:8090/abort"
reply = requests.get(url_abort)#.json()
print('Pressing "Abort" produced:', reply)
class UndulatorCoupledDoubleCrystalMonoEnergy(Adjustable):
def __init__(self, ID, name=None, process_time=1):
# self.und = UndulatorEnergy(process_time=process_time)
self.und = Undulators(energy_offset=ENERGY_OFFSET, n_und_ref=7)
pvname_setvalue = "SAROP11-ARAMIS:ENERGY_SP"
pvname_readback = "SAROP11-ARAMIS:ENERGY"
pvname_moving = "SAROP11-ODCM105:MOVING"
# This is the WRONG coupling, we need to make sure it is disabled!
pvname_ebeam_coupling = "SGE-OP2E-ARAMIS:MODE_SP"
pv_setvalue = PV(pvname_setvalue)
pv_readback = PV(pvname_readback)
pv_moving = PV(pvname_moving)
pv_ebeam_coupling = PV(pvname_ebeam_coupling)
units = pv_readback.units
super().__init__(ID, name=name, units=units)
self.pvnames = SimpleNamespace(
setvalue = pvname_setvalue,
readback = pvname_readback,
moving = pvname_moving,
ebeam_coupling = pvname_ebeam_coupling
)
self.pvs = SimpleNamespace(
setvalue = pv_setvalue,
readback = pv_readback,
moving = pv_moving,
ebeam_coupling = pv_ebeam_coupling
)
def get_current_value(self):
return self.pvs.readback.get()
def set_target_value(self, value, hold=False):
changer = lambda: self.move_and_wait(value)
return self._as_task(changer, hold=hold, stopper=self.stop)
def move_and_wait(self, value, wait_time=0.1):
# self.disable_ebeam_coupling()
self.pvs.setvalue.put(value)
self.und.set_target_value(value)
sleep(1) #TODO: is this correct?
while self.is_moving():
print("mono is moving")
sleep(wait_time)
def is_moving(self):
moving = self.pvs.moving.get()
return bool(moving)
# def enable_ebeam_coupling(self):
# self.pvs.ebeam_coupling.put(1)
# def disable_ebeam_coupling(self):
# self.pvs.ebeam_coupling.put(0)
# @property
# def ebeam_coupling(self):
# return self.pvs.ebeam_coupling.get(as_string=True)
class UndulatorCoupledDoubleCrystalMonoEnergyWithTimeCorrection(Adjustable):
def __init__(self, ID="UCDCMEWTC", name="Alvra DCM Undulator-coupled energy with time correction", limit_low=2800, limit_high=3050, process_time=1):
# self.und = UndulatorEnergy(process_time=process_time)
# self.und = Undulators(energy_offset=ENERGY_OFFSET)
self.und = Undulators(energy_offset=ENERGY_OFFSET, n_und_ref=7)
self.wait_time = 0.1
pvname_setvalue = "SAROP11-ARAMIS:ENERGY_SP"
pvname_readback = "SAROP11-ARAMIS:ENERGY"
pvname_moving = "SAROP11-ODCM105:MOVING"
# This is the WRONG coupling, we need to make sure it is disabled!
pvname_ebeam_coupling = "SGE-OP2E-ARAMIS:MODE_SP"
pv_setvalue = PV(pvname_setvalue)
pv_readback = PV(pvname_readback)
pv_moving = PV(pvname_moving)
pv_ebeam_coupling = PV(pvname_ebeam_coupling)
self.timing = Motor("SLAAR11-LMOT-M452:MOTOR_1")
# self.electron_energy_rb = PV("SARCL02-MBND100:P-READ")
# self.electron_energy_sv = PV("SGE-OP2E-ARAMIS:E_ENERGY_SP")
units = pv_readback.units
super().__init__(ID, name=name, units=units)
self.limit_low = limit_low
self.limit_high = limit_high
self.pvnames = SimpleNamespace(
setvalue = pvname_setvalue,
readback = pvname_readback,
moving = pvname_moving,
ebeam_coupling = pvname_ebeam_coupling
)
self.pvs = SimpleNamespace(
setvalue = pv_setvalue,
readback = pv_readback,
moving = pv_moving,
ebeam_coupling = pv_ebeam_coupling
)
def get_current_value(self):
return self.pvs.readback.get()
def set_target_value(self, value, hold=False):
ll = self.limit_low
if ll is not None:
if value < ll:
msg = f"requested value is outside the allowed range: {value} < {ll}"
print(msg)
raise KeyboardInterrupt(msg)
lh = self.limit_high
if lh is not None:
if value > lh:
msg = f"requested value is outside the allowed range: {value} > {lh}"
print(msg)
raise KeyboardInterrupt(msg)
wait_time = self.wait_time
self.disable_ebeam_coupling()
current_energy = self.get_current_value()
delta_energy = value - current_energy
#delta_energy = value
timing = self.timing
current_delay = timing.get_current_value()
delta_delay = convert_E_to_distance(delta_energy)
target_delay = current_delay + delta_delay
#target_delay = delta_delay
print(f"Energy = {current_energy} -> delta = {delta_energy} -> {value}")
print(f"Delay = {current_delay} -> delta = {delta_delay} -> {target_delay}")
timing.set_target_value(target_delay).wait()
self.move_and_wait(value)
sleep(1) # wait so that the set value has changed
print("start waiting for DCM")
while self.is_moving(): #TODO: moving PV seems broken
print("mono is moving")
sleep(wait_time)
# print("start waiting for electron beam")
# while abs(self.electron_energy_rb.get() - self.electron_energy_sv.get()) > 0.25:
# sleep(wait_time)
sleep(wait_time)
def move_and_wait(self, value, wait_time=0.1):
self.disable_ebeam_coupling()
self.pvs.setvalue.put(value)
self.und.set_target_value(value)
sleep(1) #TODO: is this correct?
while self.is_moving():
print("mono is moving")
sleep(wait_time)
def is_moving(self):
moving = self.pvs.moving.get()
return bool(moving)
# def enable_ebeam_coupling(self):
# self.pvs.ebeam_coupling.put(1)
def disable_ebeam_coupling(self):
self.pvs.ebeam_coupling.put(0)
# @property
# def ebeam_coupling(self):
# return self.pvs.ebeam_coupling.get(as_string=True)
# adjust this function!!
# be careful, CDCMEWTC has its own conversion!!!
def convert_E_to_distance(E): ### returns a value in mm!
#return 0.0061869 * E ### calibration May 2021, S k-edge, 2450 eV, corresponds to 41.2 fs/eV --> this is with InSb111!!
#return 0.00524244 * E ### calibration Nov 2021, Rh L-edge, 3000 eV, corresponds to 35 fs/eV at 20 mm gap
#return 0.0005445 * E ### calibration Mar 2022, Mn K-edge, 6500 eV, corresponds to 3.6 fs/eV at 20 mm gap
#return 0.00029134 * E ### calibration Nov 2023, Mn K-edge, 6500 eV, corresponds to 1.9 fs/eV at 10 mm gap
#return 0.0004692 * E ### calibration Mar 2022, Fe K-edge, 7100 eV, corresponds to 3.13 fs/eV at 20 mm gap
#return 0.0148402 * E ### calibration May 2022, S K-edge, 2470 eV, corresponds to 99 fs/eV at 20 mm gap
return 0.00021 * E ### calibration Oct 2023, Ni K-edge, 8350 eV, corresponds to 1.4 fs/eV at 10 mm gap
#return 0.0067003 * E ### calibration Jan 2023, Cl K-edge / Ru L3-edge, 2830 eV, corresponds to 45 fs/eV at 20 mm gap
#return 0.00495847 * E ### calibration Jan 2023, Rh L-edge, 3000 eV, corresponds to 33 fs/eV, very similar to Nov '21
#return 0.0147342 * E ### calibration Oct 2024, S K-edge, 2470 eV, corresponds to 98 fs/eV at 20 mm gap
#params = [-3.62574226e-04, 1.62862011e+00, -1.80030011e+03] ### calibration May 2024, P K-edge, 2150 eV, corresponds to ~500 fs/eV
#p = np.poly1d(params)
#return p(E)
#und = UndulatorEnergy()
mono_und = UndulatorCoupledDoubleCrystalMonoEnergy("MONO_UND", name="Alvra DCM Undulator-coupled energy")
UCDCMEWTC = UndulatorCoupledDoubleCrystalMonoEnergyWithTimeCorrection(limit_low=2450, limit_high=2550)
class TXS(Device):
def __init__(self, ID="SAROP11-PTXS128", name="TXS"):
super().__init__(ID, name=name)
self.x = Motor(ID + ":TRX1")
self.y = Motor(ID + ":TRY1")
self.z = Motor(ID + ":TRZ1")
self.crystals = SimpleDevice("TXS Crystals",
left = SimpleDevice("Left Crystals",
linear = SmarActAxis(ID + ":TRX11"),
rotary = SmarActAxis(ID + ":ROTY11"),
gonio1 = SmarActAxis(ID + ":ROTX11"),
gonio2 = SmarActAxis(ID + ":ROTX12"),
gonio3 = SmarActAxis(ID + ":ROTX13")
),
right = SimpleDevice("Right Crystals",
linear = SmarActAxis(ID + ":TRX21"),
rotary = SmarActAxis(ID + ":ROTY21"),
gonio1 = SmarActAxis(ID + ":ROTX21"),
gonio2 = SmarActAxis(ID + ":ROTX22"),
gonio3 = SmarActAxis(ID + ":ROTX23")
)
)
from colorama import Fore, Style
class Deprecator:
def __init__(self, old_name, new_name):
self._old_name = old_name
self._new_name = new_name
def __repr__(self):
return ""
def __getattr__(self, name):
print(
Fore.RED +
f"\"{self._old_name}\" has been renamed \"{self._new_name}\""
+ Style.RESET_ALL
)
return lambda *args, **kwargs: self._method(self._new_name, name, *args, **kwargs)
def _method(self, new_name, meth_name, *args, **kwargs):
args = [repr(v) for v in args]
args += [f"{k}={repr(v)}" for k, v in kwargs.items()]
args = ", ".join(args)
print(f"please use the following command instead:\n {new_name}.{meth_name}({args})")