Files
crystfel_tools/pyfai-tools/convert-scan-for-pyfai.py
Beale John Henry a34f0f3738 changed protocol
2023-03-23 12:11:39 +01:00

108 lines
2.9 KiB
Python

#!/usr/bin/env python3
# authors J.Beale + lots of help from Alexander Steppke and Sven Augustin - love you both!
"""
# aim
- -16M=varient for large detectors
make image file to input into pyFAI for initial detector beam-centre and detector distance calibration
refer to Cristallina8M-calibration for complete protocol
https://docs.google.com/document/d/1RoeUUogvRxX4M6uqGwkjf3dVJBabiMUx4ZxwcA5e9Dc/edit#
# protocol
take scan of LaB6
## IMPORTANT ##
- save image as photon-counts - in slic/run_control scale=beam energy
- detector_geometry=TRUE - saves detector panels in their correct orientation
## scan inputs ##
- <0.01 trans
- motor scan > 10 um per step
- 10 images per step, 100 steps
- use scan.json as input for this script
# usage
python convert-scan-for-pyfai.py -j <jugfrau-name> -s <path to scan file> -n <name of output file>
# output
creates a .npy file that can be loaded directly into pyFAI
"""
# modules
from matplotlib import pyplot as plt
import numpy as np
from sfdata import SFScanInfo
from tqdm import tqdm
import argparse
def convert_image( path_to_json, jungfrau, name ):
# opens scan
print( "opening scane" )
scan = SFScanInfo( path_to_json )
# steps in scane
nsteps = len(scan)
# define step ch and im_shape
step = scan[0]
ch = step[jungfrau]
img_shape = ch[0].shape
print("stepping through scan and averaging images at each step")
# step through scan and average files from each positions
imgs_shape = (nsteps, *img_shape)
imgs = np.empty(imgs_shape)
for i, subset in tqdm(enumerate(scan)):
# go through data in_batches so you don't run out of memory
ch = subset[jungfrau]
mean = np.zeros(img_shape)
for _indices, batch in ch.in_batches(size=2):
mean += np.mean(batch, axis=0)
# take mean of means for batch opened data
imgs[i] = mean
print( "done" )
# sum averaged imaged
print( "final average" )
mean_image = imgs.mean(axis=0)
print("done")
# output to file
print( "saving to .npy = {0}".format( name ) )
np.save( "{0}.npy".format( name ), mean_image )
print( "done" )
# create plot of summed, averaged scan
fig, ax = plt.subplots()
ax.imshow(mean_image, vmin=0, vmax=1000)
plt.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-j",
"--jungfrau",
help="name of the jungfrau used, i.e., JF17T16V01 for Cristallina MX",
type=str,
default="JF17T16V01"
)
parser.add_argument(
"-s",
"--scan",
help="path to json scan file",
type=str,
default="/sf/cristallina/data/p20590/raw/run0003/meta/scan.json"
)
parser.add_argument(
"-n",
"--name",
help="name of output file",
type=str,
default="mean_scan"
)
args = parser.parse_args()
convert_image( args.scan, args.jungfrau, args.name )