Files
crystfel_tools/reduction_tools/stream_stats.py

128 lines
4.2 KiB
Python

#!/usr/bin/env python3
# author J.Beale
"""
# aim
a quick a dirty script to see how your indexing went
will spit out useful parameters like the number images, indexing rate etc
# usage
python stream_stats <path to stream file>
# output
text in line - no files
chunks, crystals, indexing rate, mean res, obs, unit cell parameters
"""
import numpy as np
import pandas as pd
import regex as re
import sys
def scrub_cells( line ):
# get uc values from stream file
# example - Cell parameters 7.71784 7.78870 3.75250 nm, 90.19135 90.77553 90.19243 deg
pattern = r"Cell\sparameters\s(\d+\.\d+)\s(\d+\.\d+)\s(\d+\.\d+)\snm,\s(\d+\.\d+)\s(\d+\.\d+)\s(\d+\.\d+)\sdeg"
a = re.search( pattern, line ).group(1)
b = re.search( pattern, line ).group(2)
c = re.search( pattern, line ).group(3)
alpha = re.search( pattern, line ).group(4)
beta = re.search( pattern, line ).group(5)
gamma = re.search( pattern, line ).group(6)
return [ a, b, c, alpha, beta, gamma ]
def scrub_res( stream ):
# get diffraction limit
# example - diffraction_resolution_limit = 4.07 nm^-1 or 2.46 A
pattern = r"diffraction_resolution_limit\s=\s\d\.\d+\snm\^-1\sor\s(\d+\.\d+)\sA"
res = re.search( pattern, stream ).group(1)
return res
def scrub_obs( stream ):
# get number of reflections
# example - num_reflections = 308
pattern = r"num_reflections\s=\s(\d+)"
obs = re.search( pattern, stream ).group(1)
return obs
def main( stream_pwd ):
chunks = 0
xtals = 0
cells = []
obs_list = []
res_list = []
print( "scrubing data" )
# open stream file
with open( stream_pwd ) as stream:
for line in stream:
# count chunks
if line.startswith( "----- Begin chunk -----" ):
chunks = chunks + 1
# get cell
if line.startswith( "Cell parameters" ):
cell = scrub_cells( line )
cells.append( cell )
xtals = xtals + 1
# get res
if line.startswith( "diffraction_resolution_limit" ):
res = scrub_res( line )
res_list.append( res )
# get obs
if line.startswith( "num_reflections" ):
obs = scrub_obs( line )
obs_list.append( obs )
if chunks % 1000 == 0:
print( "scrubbed {0} chunks".format( chunks ), end='\r' )
# res_df
cols = [ "a", "b", "c", "alpha", "beta", "gamma" ]
df = pd.DataFrame( cells, columns=cols )
df[ "resolution" ] = res_list
df[ "obs" ] = obs_list
# convert all to floats
df = df.astype(float)
print( "calculating stream stats" )
# stats
index_rate = round( xtals/chunks*100, 2 )
mean_res, std_res = round( df.resolution.mean(), 2 ), round( df.resolution.std(), 2 )
median_res = df.resolution.median()
mean_obs, std_obs = round( df.obs.mean(), 2 ), round( df.obs.std(), 2)
mean_a, std_a = round( df.a.mean()*10, 2 ), round( df.a.std()*10, 2 )
mean_b, std_b = round( df.b.mean()*10, 2 ), round( df.b.std()*10, 2 )
mean_c, std_c = round( df.c.mean()*10, 2 ), round( df.c.std()*10, 2 )
mean_alpha, std_alpha = round( df.alpha.mean(), 2 ), round( df.alpha.std(), 2 )
mean_beta, std_beta = round(df.beta.mean(), 2 ), round( df.beta.std(), 2 )
mean_gamma, std_gamma = round( df.gamma.mean(), 2 ), round( df.gamma.std(), 2 )
# results
print( "image = {0}".format( chunks ) )
print( "crystals = {0}".format( xtals ) )
print( "indexing rate = {0} %".format( index_rate ) )
print( "mean resolution = {0} +/- {1} A".format( mean_res, std_res ) )
print( "median resolution = {0} A".format( median_res ) )
print( "mean observations = {0} +/- {1}".format( mean_obs, std_obs ) )
print( "mean a = {0} +/- {1} A".format( mean_a, std_a ) )
print( "mean b = {0} +/- {1} A".format( mean_b, std_b ) )
print( "mean c = {0} +/- {1} A".format( mean_c, std_c ) )
print( "mean alpha = {0} +/- {1} A".format( mean_alpha, std_alpha ) )
print( "mean beta = {0} +/- {1} A".format( mean_beta, std_beta ) )
print( "mean gamma = {0} +/- {1} A".format( mean_gamma, std_gamma ) )
if __name__ == "__main__":
stream_pwd = sys.argv[1]
main( stream_pwd )