491 lines
16 KiB
Python
491 lines
16 KiB
Python
#!/usr/bin/python
|
|
|
|
# author J.Beale
|
|
|
|
"""
|
|
# aim
|
|
to merge .stream files and calculate statistics
|
|
|
|
# usage
|
|
python partialator.py -s <path-to-stream-file>
|
|
-n name (name of job - default = partialator)
|
|
-p pointgroup
|
|
-m model (unity or xsphere - default is unity)
|
|
-i iterations - number of iterations in partialator
|
|
-c <path-to-cell-file>
|
|
-b number of resolution bins - must be > 20
|
|
-r high-res limt. Needs a default. Default set to 1.3
|
|
-a max-adu. Default = 12000
|
|
-v ra reservation name if available
|
|
|
|
# output
|
|
- scaled/merged files
|
|
- an mtz file
|
|
- useful plots
|
|
- useful summerized .dat files
|
|
- log file of output
|
|
"""
|
|
|
|
# modules
|
|
from sys import exit
|
|
import pandas as pd
|
|
import numpy as np
|
|
import subprocess
|
|
import os, errno
|
|
import time
|
|
import argparse
|
|
from tqdm import tqdm
|
|
import regex as re
|
|
import matplotlib.pyplot as plt
|
|
from scipy.optimize import curve_fit
|
|
import warnings
|
|
warnings.filterwarnings( "ignore", category=RuntimeWarning )
|
|
from loguru import logger
|
|
|
|
def submit_job( job_file, reservation ):
|
|
|
|
# submit the job
|
|
if reservation:
|
|
print( "using a ra beamtime reservation = {0}".format( reservation ) )
|
|
logger.info( "using ra reservation to process data = {0}".format( reservation ) )
|
|
submit_cmd = [ "sbatch", "-p", "day", "--reservation={0}".format( reservation ), "--cpus-per-task=32", "--" , job_file ]
|
|
else:
|
|
submit_cmd = [ "sbatch", "-p", "day", "--cpus-per-task=32", "--" , job_file ]
|
|
logger.info( "using slurm command = {0}".format( submit_cmd ) )
|
|
|
|
try:
|
|
job_output = subprocess.check_output( submit_cmd )
|
|
logger.info( "submited job = {0}".format( job_output ) )
|
|
except subprocess.CalledProcessError as e:
|
|
print( "please give the correct ra reservation or remove the -v from the arguements" )
|
|
exit()
|
|
|
|
# scrub job id from - example Submitted batch job 742403
|
|
pattern = r"Submitted batch job (\d+)"
|
|
job_id = re.search( pattern, job_output.decode().strip() ).group(1)
|
|
|
|
return int( job_id )
|
|
|
|
def wait_for_jobs( job_ids, total_jobs ):
|
|
|
|
with tqdm( total=total_jobs, desc="Jobs Completed", unit="job" ) as pbar:
|
|
while job_ids:
|
|
completed_jobs = set()
|
|
for job_id in job_ids:
|
|
status_cmd = [ "squeue", "-h", "-j", str( job_id ) ]
|
|
status = subprocess.check_output( status_cmd )
|
|
if not status:
|
|
completed_jobs.add( job_id )
|
|
pbar.update( 1 )
|
|
job_ids.difference_update( completed_jobs )
|
|
time.sleep( 2 )
|
|
|
|
def run_partialator( proc_dir, name, stream, pointgroup, model, iterations, adu ):
|
|
|
|
# partialator file name
|
|
part_run_file = "{0}/partialator_{1}.sh".format( proc_dir, name )
|
|
|
|
# write file
|
|
part_sh = open( part_run_file, "w" )
|
|
part_sh.write( "#!/bin/sh\n\n" )
|
|
part_sh.write( "module purge\n" )
|
|
part_sh.write( "module use MX unstable\n" )
|
|
part_sh.write( "module load crystfel/0.10.2-rhel8\n" )
|
|
part_sh.write( "partialator -i {0} \\\n".format( stream ) )
|
|
part_sh.write( " -o {0}.hkl \\\n".format( name ) )
|
|
part_sh.write( " -y {0} \\\n".format( pointgroup ) )
|
|
part_sh.write( " --model={0} \\\n".format( model ) )
|
|
part_sh.write( " --max-adu={0} \\\n".format( adu ) )
|
|
part_sh.write( " -j 32 \\\n" )
|
|
part_sh.write( " --iterations={0}\n\n".format( iterations ) )
|
|
part_sh.close()
|
|
|
|
# make file executable
|
|
subprocess.call( [ "chmod", "+x", "{0}".format( part_run_file ) ] )
|
|
|
|
# add partialator script to log
|
|
part_input = open( part_run_file, "r" )
|
|
logger.info( "partialator input file =\n{0}".format( part_input.read() ) )
|
|
part_input.close()
|
|
|
|
# return partialator file name
|
|
return part_run_file
|
|
|
|
def run_compare_check( proc_dir, name, cell, shells, part_h_res ):
|
|
|
|
# check file name
|
|
check_run_file = "{0}/check_{1}.sh".format( proc_dir, name )
|
|
|
|
# write file
|
|
check_sh = open( check_run_file, "w" )
|
|
check_sh.write( "#!/bin/sh\n\n" )
|
|
check_sh.write( "module purge\n" )
|
|
check_sh.write( "module use MX unstable\n" )
|
|
check_sh.write( "module load crystfel/0.10.2-rhel8\n" )
|
|
check_sh.write( "check_hkl --shell-file=mult.dat *.hkl -p {0} --nshells={1} --highres={2} &> check_hkl.log\n".format( cell, shells, part_h_res ) )
|
|
check_sh.write( "check_hkl --ltest --ignore-negs --shell-file=ltest.dat *.hkl -p {0} --nshells={1} --highres={2} &> ltest.log\n".format( cell, shells, part_h_res ) )
|
|
check_sh.write( "check_hkl --wilson --shell-file=wilson.dat *.hkl -p {0} --nshells={1} --highres={2} &> wilson.log\n".format( cell, shells, part_h_res ) )
|
|
check_sh.write( "compare_hkl --fom=Rsplit --shell-file=Rsplit.dat *.hkl1 *hkl2 -p {0} --nshells={1} --highres={2} &> Rsplit.log\n".format( cell, shells, part_h_res ) )
|
|
check_sh.write( "compare_hkl --fom=cc --shell-file=cc.dat *.hkl1 *hkl2 -p {0} --nshells={1} --highres={2} &> cc.log\n".format( cell, shells, part_h_res ) )
|
|
check_sh.write( "compare_hkl --fom=ccstar --shell-file=ccstar.dat *.hkl1 *hkl2 -p {0} --nshells={1} --highres={2} &> ccstar.log\n".format( cell, shells, part_h_res ) )
|
|
check_sh.close()
|
|
|
|
# make file executable
|
|
subprocess.call( [ "chmod", "+x", "{0}".format( check_run_file ) ] )
|
|
|
|
# add check script to log
|
|
check_input = open( check_run_file, "r" )
|
|
logger.info( "check input file =\n{0}".format( check_input.read() ) )
|
|
check_input.close()
|
|
|
|
# return check file name
|
|
return check_run_file
|
|
|
|
def make_process_dir( dir ):
|
|
# make process directory
|
|
try:
|
|
os.makedirs( dir )
|
|
except OSError as e:
|
|
if e.errno != errno.EEXIST:
|
|
raise
|
|
|
|
def summary_stats( cc_dat, ccstar_dat, mult_dat, rsplit_dat, wilson_dat ):
|
|
|
|
# read all files into pd
|
|
# function to sort out different column names
|
|
def read_dat( dat, var ):
|
|
|
|
# different columns names of each dat file
|
|
if var == "cc":
|
|
cols = [ "d(nm)", "cc", "nref", "d", "min", "max" ]
|
|
elif var == "ccstar":
|
|
cols = [ "1(nm)", "ccstar", "nref", "d", "min", "max" ]
|
|
elif var == "mult":
|
|
cols = [ "d(nm)", "nref", "poss", "comp", "obs",
|
|
"mult", "snr", "I", "d", "min", "max" ]
|
|
elif var == "rsplit":
|
|
cols = [ "d(nm)", "rsplit", "nref", "d", "min", "max" ]
|
|
elif var == "wilson":
|
|
cols = [ "bin", "s2", "d", "lnI", "nref" ]
|
|
|
|
df = pd.read_csv( dat, names=cols, skiprows=1, sep="\s+" )
|
|
|
|
return df
|
|
|
|
# make df
|
|
cc_df = read_dat( cc_dat, "cc" )
|
|
ccstar_df = read_dat( ccstar_dat, "ccstar" )
|
|
mult_df = read_dat( mult_dat, "mult" )
|
|
rsplit_df = read_dat( rsplit_dat, "rsplit" )
|
|
wilson_df = read_dat( wilson_dat, "wilson" )
|
|
|
|
# remove unwanted cols
|
|
cc_df = cc_df[ [ "cc" ] ]
|
|
ccstar_df = ccstar_df[ [ "ccstar" ] ]
|
|
rsplit_df = rsplit_df[ [ "rsplit" ] ]
|
|
wilson_df = wilson_df[ [ "lnI" ] ]
|
|
|
|
# merge dfs
|
|
stats_df = pd.concat( [ mult_df, cc_df, ccstar_df, rsplit_df, wilson_df ], axis=1, join="inner" )
|
|
|
|
# make 1/d, 1/d^2 column
|
|
stats_df[ "1_d" ] = 1 / stats_df.d
|
|
stats_df[ "1_d2" ] = 1 / stats_df.d**2
|
|
|
|
# change nan to 0
|
|
stats_df = stats_df.fillna(0)
|
|
|
|
return stats_df
|
|
|
|
def get_metric( d2_series, cc_series, cut_off ):
|
|
|
|
# Define the tanh function from scitbx
|
|
def tanh(x, r, s0):
|
|
z = (x - s0)/r
|
|
return 0.5 * ( 1 - np.tanh(z) )
|
|
|
|
def arctanh( y, r, s0 ):
|
|
return r * np.arctanh( 1 - 2*y ) + s0
|
|
|
|
# Fit the tanh to the data
|
|
params, covariance = curve_fit( tanh, d2_series, cc_series )
|
|
|
|
# Extract the fitted parameters
|
|
r, s0 = params
|
|
|
|
# calculate cut-off point
|
|
cc_stat = arctanh( cut_off, r, s0 )
|
|
# covert back from 1/d2 to d
|
|
cc_stat = np.sqrt( ( 1 / cc_stat ) )
|
|
|
|
# get curve for plotting
|
|
cc_tanh = tanh( d2_series, r, s0 )
|
|
|
|
return round( cc_stat, 3 ), cc_tanh
|
|
|
|
def get_overall_cc():
|
|
|
|
# open cc log file
|
|
cc_log_file = open( "cc.log" )
|
|
cc_log = cc_log_file.read()
|
|
|
|
# regex example = Overall CC = 0.5970865
|
|
overcc_pattern = r"Overall\sCC\s=\s(\d\.\d+)"
|
|
try:
|
|
overcc = re.search( overcc_pattern, cc_log ).group(1)
|
|
except AttributeError as e:
|
|
overcc = np.nan
|
|
|
|
return overcc
|
|
|
|
def get_overall_rsplit():
|
|
|
|
# open rsplit log file
|
|
rsplit_log_file = open( "Rsplit.log" )
|
|
rsplit_log = rsplit_log_file.read()
|
|
|
|
# regex example = Overall Rsplit = 54.58 %
|
|
overrsplit_pattern = r"Overall\sRsplit\s=\s(\d+\.\d+)"
|
|
try:
|
|
overrsplit = re.search( overrsplit_pattern, rsplit_log ).group(1)
|
|
except AttributeError as e:
|
|
overrsplit = np.nan
|
|
|
|
return overrsplit
|
|
|
|
def get_b():
|
|
|
|
# open rsplit log file
|
|
wilson_log_file = open( "wilson.log" )
|
|
wilson_log = wilson_log_file.read()
|
|
|
|
# regex example = B = 41.63 A^2
|
|
b_factor_pattern = r"B\s=\s(\d+\.\d+)\sA"
|
|
try:
|
|
b_factor = re.search( b_factor_pattern, wilson_log ).group(1)
|
|
except AttributeError as e:
|
|
b_factor = np.nan
|
|
|
|
return b_factor
|
|
|
|
def summary_fig( stats_df, cc_tanh, ccstar_tanh, cc_cut, ccstar_cut ):
|
|
|
|
def dto1_d( x ):
|
|
return 1/x
|
|
|
|
# plot results
|
|
cc_fig, axs = plt.subplots(2, 2)
|
|
cc_fig.suptitle( "cc and cc* vs resolution" )
|
|
|
|
# cc plot
|
|
color = "tab:red"
|
|
axs[0,0].set_xlabel( "1/d (1/A)" )
|
|
axs[0,0].set_ylabel( "CC", color=color )
|
|
axs[0,0].set_ylim( 0, 1 )
|
|
axs[0,0].axhline( y = 0.3, color="black", linestyle = "dashed" )
|
|
# plot cc
|
|
axs[0,0].plot( stats_df[ "1_d" ], stats_df.cc, color=color )
|
|
# plot fit
|
|
axs[0,0].plot( stats_df[ "1_d" ], cc_tanh, color="tab:grey", linestyle = "dashed" )
|
|
sax1 = axs[0,0].secondary_xaxis( 'top', functions=( dto1_d, dto1_d ) )
|
|
sax1.set_xlabel('d (A)')
|
|
axs[0,0].tick_params( axis="y", labelcolor=color )
|
|
axs[0,0].text( 0.1, 0.1, "CC0.5 @ 0.3 = {0}".format( cc_cut ), fontsize = 8 )
|
|
|
|
# cc* plot
|
|
color = "tab:blue"
|
|
axs[0,1].set_xlabel( "1/d (1/A)" )
|
|
axs[0,1].set_ylabel( "CC*", color=color )
|
|
axs[0,1].set_ylim( 0, 1 )
|
|
axs[0,1].axhline( y = 0.7, color="black", linestyle = "dashed" )
|
|
axs[0,1].plot( stats_df[ "1_d" ], stats_df.ccstar, color=color )
|
|
# plot fit
|
|
axs[0,1].plot( stats_df[ "1_d" ], ccstar_tanh, color="tab:grey", linestyle = "dashed" )
|
|
sax2 = axs[0,1].secondary_xaxis( 'top', functions=( dto1_d, dto1_d ) )
|
|
sax2.set_xlabel('d (A)')
|
|
axs[0,1].tick_params( axis='y', labelcolor=color )
|
|
axs[0,1].text( 0.1, 0.1, "CC* @ 0.7 = {0}".format( ccstar_cut ) , fontsize = 8 )
|
|
|
|
# rsplit plot
|
|
color = "tab:green"
|
|
axs[1,0].set_xlabel( "1/d (1/A)" )
|
|
axs[1,0].set_ylabel( "Rsplit", color=color )
|
|
axs[1,0].plot( stats_df[ "1_d" ], stats_df.rsplit, color=color )
|
|
sax3 = axs[1,0].secondary_xaxis( 'top', functions=( dto1_d, dto1_d ) )
|
|
sax3.set_xlabel( 'd (A)' )
|
|
axs[1,0].tick_params( axis='y', labelcolor=color )
|
|
|
|
# wilson plot
|
|
color = "tab:purple"
|
|
axs[1,1].set_xlabel( "1/d**2 (1/A**2)" )
|
|
axs[1,1].set_ylabel( "lnI", color=color )
|
|
axs[1,1].plot( stats_df[ "1_d2" ], stats_df.lnI, color=color )
|
|
axs[1,1].tick_params( axis='y', labelcolor=color )
|
|
|
|
# save figure
|
|
plt.tight_layout()
|
|
plt.savefig( "plots.png" )
|
|
|
|
def main( cwd, name, stream, pointgroup, model, iterations, cell, shells, part_h_res, adu, reservation ):
|
|
|
|
# submitted job set
|
|
submitted_job_ids = set()
|
|
|
|
part_dir = "{0}/{1}".format( cwd, name )
|
|
# make part directories
|
|
make_process_dir( part_dir )
|
|
|
|
# move to part directory
|
|
os.chdir( part_dir )
|
|
|
|
print( "making partialator file" )
|
|
# make partialator run file
|
|
part_run_file = run_partialator( part_dir, name, stream, pointgroup, model, iterations, adu )
|
|
check_run_file = run_compare_check( part_dir, name, cell, shells, part_h_res )
|
|
|
|
# submit job
|
|
job_id = submit_job( part_run_file, reservation )
|
|
print( f"job submitted: {0}".format( job_id ) )
|
|
submitted_job_ids.add( job_id )
|
|
|
|
# use progress bar to track job completion
|
|
time.sleep(10)
|
|
wait_for_jobs( submitted_job_ids, 1 )
|
|
print( "slurm processing done" )
|
|
|
|
# now run the check and compare scripts
|
|
print( "running check/compare" )
|
|
submit_cmd = [ "{0}".format( check_run_file ) ]
|
|
subprocess.call( submit_cmd )
|
|
print( "done" )
|
|
|
|
# stats files names
|
|
cc_dat = "cc.dat"
|
|
ccstar_dat = "ccstar.dat"
|
|
mult_dat = "mult.dat"
|
|
rsplit_dat = "Rsplit.dat"
|
|
wilson_dat = "wilson.dat"
|
|
|
|
# make summary data table
|
|
stats_df = summary_stats( cc_dat, ccstar_dat, mult_dat, rsplit_dat, wilson_dat )
|
|
logger.info( "stats table from .dat file =\n{0}".format( stats_df.to_string() ) )
|
|
print_df = stats_df[ [ "1_d", "d", "min",
|
|
"max", "nref", "poss",
|
|
"comp", "obs", "mult",
|
|
"snr", "I", "rsplit", "cc", "ccstar" ] ]
|
|
print_df.to_csv( "summary_table.csv", sep="\t", index=False )
|
|
|
|
# calculate cc metrics
|
|
cc_cut, cc_tanh = get_metric( stats_df[ "1_d2" ], stats_df.cc, 0.3 )
|
|
ccstar_cut, ccstar_tanh = get_metric( stats_df[ "1_d2" ], stats_df.ccstar, 0.7 )
|
|
print( "resolution at CC0.5 at 0.3 = {0}".format( cc_cut ) )
|
|
print( "resolution at CC* at 0.7 = {0}".format( ccstar_cut ) )
|
|
logger.info( "resolution at CC0.5 at 0.3 = {0}".format( cc_cut ) )
|
|
logger.info( "resolution at CC* at 0.7 = {0}".format( ccstar_cut ) )
|
|
|
|
# scrub other metrics
|
|
|
|
overcc = get_overall_cc()
|
|
overrsplit = get_overall_rsplit()
|
|
b_factor = get_b()
|
|
|
|
logger.info( "overall CC0.5 = {0}".format( overcc ) )
|
|
logger.info( "overall Rsplit = {0}".format( overrsplit ) )
|
|
logger.info( "overall B = {0}".format( b_factor ) )
|
|
|
|
# show plots
|
|
summary_fig( stats_df, cc_tanh, ccstar_tanh, cc_cut, ccstar_cut )
|
|
|
|
# move back to top dir
|
|
os.chdir( cwd )
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"-n",
|
|
"--name",
|
|
help="name of partialator run, also name of folder where data will be processed.",
|
|
type=str,
|
|
required=True
|
|
)
|
|
parser.add_argument(
|
|
"-s",
|
|
"--stream_file",
|
|
help="path to stream file",
|
|
type=os.path.abspath,
|
|
required=True
|
|
)
|
|
parser.add_argument(
|
|
"-p",
|
|
"--pointgroup",
|
|
help="pointgroup used by CrystFEL for partialator run",
|
|
type=str,
|
|
required=True
|
|
)
|
|
parser.add_argument(
|
|
"-m",
|
|
"--model",
|
|
help="model used partialator, e.g., unity or xsphere. Default = unity.",
|
|
type=str,
|
|
default="unity"
|
|
)
|
|
parser.add_argument(
|
|
"-i",
|
|
"--iterations",
|
|
help="number of iterations used for partialator run. Default = 1.",
|
|
type=int,
|
|
default=1
|
|
)
|
|
parser.add_argument(
|
|
"-c",
|
|
"--cell_file",
|
|
help="path to CrystFEL cell file for partialator.",
|
|
type=os.path.abspath,
|
|
required=True
|
|
)
|
|
parser.add_argument(
|
|
"-b",
|
|
"--bins",
|
|
help="number of resolution bins to use. Should be more than 20. Default = 20.",
|
|
type=int,
|
|
default=20
|
|
)
|
|
parser.add_argument(
|
|
"-r",
|
|
"--resolution",
|
|
help="high res limit - need something here. Default set to 1.3.",
|
|
type=float,
|
|
default=1.3
|
|
)
|
|
parser.add_argument(
|
|
"-a",
|
|
"--max_adu",
|
|
help="maximum detector counts to allow. Default is 12000.",
|
|
type=int,
|
|
default=12000
|
|
)
|
|
parser.add_argument(
|
|
"-v",
|
|
"--reservation",
|
|
help="reservation name for ra cluster. Usually along the lines of P11111_2024-12-10",
|
|
type=str,
|
|
default=None
|
|
)
|
|
parser.add_argument(
|
|
"-d",
|
|
"--debug",
|
|
help="output debug to terminal.",
|
|
type=bool,
|
|
default=False
|
|
)
|
|
args = parser.parse_args()
|
|
# set loguru
|
|
if not args.debug:
|
|
logger.remove()
|
|
logfile = "{0}.log".format( args.name )
|
|
logger.add( logfile, format="{message}", level="INFO")
|
|
# run main
|
|
cwd = os.getcwd()
|
|
print( "top working directory = {0}".format( cwd ) )
|
|
main( cwd, args.name, args.stream_file, args.pointgroup, args.model, args.iterations, args.cell_file, args.bins, args.resolution, args.max_adu, args.reservation )
|