483 lines
16 KiB
Python
483 lines
16 KiB
Python
#!/usr/bin/env python3
|
|
|
|
# authors T. Mason and J. Beale
|
|
|
|
|
|
# modules
|
|
import pandas as pd
|
|
import subprocess
|
|
import os, errno
|
|
import regex as re
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import time
|
|
|
|
def h5_sample( lst, sample ):
|
|
|
|
# create sample of images from run
|
|
# read h5.lst - note - removes // from image column
|
|
cols = [ "h5", "image" ]
|
|
sample_df = pd.read_csv( lst, sep="\s//", engine="python", names=cols )
|
|
|
|
# take defined sample
|
|
sample_df = sample_df.sample( sample )
|
|
|
|
# sort list
|
|
sample_df = sample_df.sort_index()
|
|
|
|
# re-add // to image columm
|
|
sample_df[ "image" ] = "//" + sample_df.image.astype(str)
|
|
|
|
# write sample to file
|
|
sample_file = "h5_{0}_sample.lst".format( sample )
|
|
sample_df.to_csv( sample_file, sep=" ", index=False, header=False )
|
|
|
|
# return sample file name
|
|
return sample_file
|
|
|
|
def geom_amend( lab6_geom_file, clen ):
|
|
|
|
# read lab6 geom
|
|
lab6_geom = open( lab6_geom_file, "r" )
|
|
|
|
# use regex to find clen and replace with new
|
|
# clen example => clen = 0.1217
|
|
clen_geom = re.sub( "clen = 0\.\d+", "clen = {0}".format( clen ), lab6_geom.read() )
|
|
|
|
# close lab6 geom file
|
|
lab6_geom.close()
|
|
|
|
# write new clen_geom to file
|
|
clen_geom_file = "{0}.geom".format( clen )
|
|
geom = open( clen_geom_file, "w" )
|
|
geom.write( clen_geom )
|
|
geom.close()
|
|
|
|
# return clen_geom file name
|
|
return clen_geom_file
|
|
|
|
def write_crystfel_run( clen, sample_h5_file, clen_geom_file, cell_file ):
|
|
|
|
# crystfel file name
|
|
cryst_run_file = "{0}_cryst_run.sh".format( clen )
|
|
|
|
# write file
|
|
run_sh = open( cryst_run_file, "w" )
|
|
run_sh.write( "#!/bin/sh\n\n" )
|
|
run_sh.write( "module purge\n" )
|
|
run_sh.write( "module load crystfel/0.10.2\n" )
|
|
run_sh.write( "indexamajig -i {0} \\\n".format( sample_h5_file ) )
|
|
run_sh.write( " --output={0}.stream \\\n".format( clen ) )
|
|
run_sh.write( " --geometry={0}\\\n".format( clen_geom_file ) )
|
|
run_sh.write( " --pdb={0} \\\n".format( cell_file ) )
|
|
run_sh.write( " --indexing=xgandalf-latt-cell --peaks=peakfinder8 \\\n" )
|
|
run_sh.write( " --integration=rings-grad --tolerance=10.0,10.0,10.0,2,3,2 --threshold=10 --min-snr=5 --int-radius=2,3,6 \\\n" )
|
|
run_sh.write( " -j 36 --no-multi --no-retry --check-peaks --max-res=3000 --min-pix-count=1 --local-bg-radius=4 --min-res=85\n\n" )
|
|
run_sh.close()
|
|
|
|
# make file executable
|
|
subprocess.call( [ "chmod", "+x", "{0}".format( cryst_run_file ) ] )
|
|
|
|
# return crystfel file name
|
|
return cryst_run_file
|
|
|
|
def make_sample(lst, sample):
|
|
|
|
# set current working directory
|
|
os.chdir("/sf/cristallina/data/p20590/work/process/jhb/detector_refinement")
|
|
cwd = os.getcwd()
|
|
|
|
# make sample list
|
|
print("making {0} sample of images".format(sample))
|
|
sample_h5 = h5_sample(lst, sample)
|
|
sample_h5_file = "{0}/{1}".format(cwd, sample_h5)
|
|
print("done")
|
|
return cwd, sample_h5_file
|
|
|
|
def make_process_dir(proc_dir):
|
|
# make process directory
|
|
try:
|
|
os.makedirs( proc_dir )
|
|
except OSError as e:
|
|
if e.errno != errno.EEXIST:
|
|
raise
|
|
|
|
def make_step_range(centre_clen, step_size, steps):
|
|
# make list of clen steps above and below the central clen
|
|
print( "make clen array around {0}".format( centre_clen ) )
|
|
step_range = step_size*steps
|
|
bottom_step = centre_clen-step_range/2
|
|
top_step = bottom_step+step_range
|
|
step_range = np.arange( bottom_step, top_step, step_size )
|
|
step_range = step_range.round( 6 ) # important - otherwise np gives your .99999999 instead of 1 somethimes
|
|
print( "done" )
|
|
|
|
return step_range
|
|
|
|
def check_job_status(username):
|
|
# wait for jobs to complete
|
|
jobs_completed = False
|
|
while not jobs_completed:
|
|
# Get the status of the jobs using "squeue"
|
|
result = subprocess.run(['squeue', '--user', '{0}'.format(username)], stdout=subprocess.PIPE)
|
|
output = result.stdout.decode('utf-8')
|
|
|
|
# Check if there are no jobs running for the user
|
|
if '{0}'.format(username) not in output:
|
|
jobs_completed = True
|
|
else:
|
|
# Sleep for some time and check again
|
|
print("waiting for jobs to finish")
|
|
time.sleep(30) # sleep for 30 seconds
|
|
|
|
print("All jobs completed.")
|
|
|
|
def scrub_clen( stream_pwd ):
|
|
|
|
# get clen from stream name
|
|
# example - /sf/cristallina/data/p20590/work/process/jhb/detector_refinement/coarse_scan/0.115/0.115.stream
|
|
# scrub clen and return - else nan
|
|
try:
|
|
pattern = r"0\.\d+/(0\.\d+)\.stream"
|
|
re_search = re.search( pattern, stream_pwd )
|
|
clen = re_search.group( 1 )
|
|
if AttributeError:
|
|
return float( clen )
|
|
except AttributeError:
|
|
return np.nan
|
|
|
|
def find_streams( top_dir ):
|
|
|
|
# create df for streams
|
|
stream_df = pd.DataFrame()
|
|
|
|
# search for all files that end with .stream
|
|
|
|
for path, dirs, files in os.walk( top_dir ):
|
|
for name in files:
|
|
if name.endswith( ".stream" ):
|
|
|
|
# get stream pwd
|
|
stream_pwd = os.path.join( path, name )
|
|
|
|
# scrub clen from stream
|
|
clen = scrub_clen( stream_pwd )
|
|
|
|
# put clen and stream pwd into df
|
|
data = [ { "stream_pwd" : stream_pwd,
|
|
"clen" : clen
|
|
} ]
|
|
stream_df_1 = pd.DataFrame( data )
|
|
stream_df = pd.concat( ( stream_df, stream_df_1 ) )
|
|
|
|
# sort df based on clen
|
|
stream_df = stream_df.sort_values( by="clen" )
|
|
|
|
# reset df index
|
|
stream_df = stream_df.reset_index( drop=True )
|
|
|
|
# return df of streams and clens
|
|
return stream_df
|
|
|
|
|
|
def scrub_us( stream ):
|
|
|
|
# get uc values from stream file
|
|
# example - Cell parameters 7.71784 7.78870 3.75250 nm, 90.19135 90.77553 90.19243 deg
|
|
# scrub clen and return - else nan
|
|
try:
|
|
pattern = r"Cell\sparameters\s(\d\.\d+)\s(\d\.\d+)\s(\d\.\d+)\snm,\s(\d+\.\d+)\s(\d+\.\d+)\s(\d+\.\d+)\sdeg"
|
|
cells = re.findall( pattern, stream )
|
|
if AttributeError:
|
|
return cells
|
|
except AttributeError:
|
|
return np.nan
|
|
|
|
def scrub_helper(top_dir):
|
|
# find stream files from process directory
|
|
print( "finding stream files" )
|
|
stream_df = find_streams( top_dir )
|
|
print( "done" )
|
|
|
|
# making results df for unit cell and index no.
|
|
stats_df = pd.DataFrame()
|
|
|
|
# loop through stream files and collect unit_cell information
|
|
print( "looping through stream files to collect unit cell, indexed information" )
|
|
for index, row in stream_df.iterrows():
|
|
|
|
stream_pwd, clen = row[ "stream_pwd" ], row[ "clen" ]
|
|
|
|
# open stream file
|
|
print( "scrubbing stream for clen={0}".format( clen ) )
|
|
stream = open( stream_pwd, "r" ).read()
|
|
|
|
# scrub unit cell information
|
|
cells = scrub_us( stream )
|
|
|
|
# put cells in df
|
|
cols = [ "a", "b", "c", "alpha", "beta", "gamma" ]
|
|
cells_df = pd.DataFrame( cells, columns=cols )
|
|
cells_df = cells_df.astype( float )
|
|
|
|
# calc stats
|
|
indexed = len( cells_df )
|
|
std_a = cells_df.a.std()
|
|
std_b = cells_df.b.std()
|
|
std_c = cells_df.c.std()
|
|
std_alpha = cells_df.alpha.std()
|
|
std_beta = cells_df.beta.std()
|
|
std_gamma = cells_df.gamma.std()
|
|
|
|
# put stats in results df
|
|
stats = [ { "clen" : clen,
|
|
"indexed" : indexed,
|
|
"std_a" : std_a,
|
|
"std_b" : std_b,
|
|
"std_c" : std_c,
|
|
"std_alpha" : std_alpha,
|
|
"std_beta" : std_beta,
|
|
"std_gamma" : std_gamma,
|
|
} ]
|
|
stats_df_1 = pd.DataFrame( stats )
|
|
stats_df = pd.concat( ( stats_df, stats_df_1 ) )
|
|
|
|
print( "done" )
|
|
|
|
# reset index
|
|
stats_df = stats_df.reset_index( drop=True )
|
|
|
|
return stats_df
|
|
|
|
def find_clen_values(stats_df):
|
|
|
|
def find_min_clen(col_name):
|
|
min_val = stats_df[col_name].min()
|
|
min_row = stats_df[stats_df[col_name] == min_val]
|
|
min_clen = min_row['clen'].values[0]
|
|
return min_val, min_clen
|
|
|
|
min_alpha_val, min_alpha_clen = find_min_clen('std_alpha')
|
|
min_beta_val, min_beta_clen = find_min_clen('std_beta')
|
|
min_gamma_val, min_gamma_clen = find_min_clen('std_gamma')
|
|
min_c_val, min_c_clen = find_min_clen('std_c')
|
|
|
|
print(f"The value of clen for the minimum alpha value of {min_alpha_val} is {min_alpha_clen}")
|
|
print(f"The value of clen for the minimum beta value of {min_beta_val} is {min_beta_clen}")
|
|
print(f"The value of clen for the minimum gamma value of {min_gamma_val} is {min_gamma_clen}")
|
|
print(f"The value of clen for the minimum c value of {min_c_val} is {min_c_clen}")
|
|
|
|
return min_alpha_clen, min_beta_clen, min_gamma_clen, min_c_clen, min_alpha_val, min_beta_val, min_gamma_val, min_c_val
|
|
|
|
|
|
def plot_indexed_std(stats_df, ax1, ax2):
|
|
# indexed images plot
|
|
color = "tab:red"
|
|
ax1.set_xlabel("clen")
|
|
ax1.set_ylabel("indexed", color=color)
|
|
ax1.plot(stats_df.clen, stats_df.indexed, color=color)
|
|
ax1.tick_params(axis="y", labelcolor=color)
|
|
|
|
# label color
|
|
color = "tab:blue"
|
|
ax2.set_ylabel("a,b,c st.deviation", color=color)
|
|
ax2.tick_params(axis='y', labelcolor=color)
|
|
|
|
# std_a plot
|
|
color = "lightsteelblue"
|
|
ax2.plot(stats_df.clen, stats_df.std_a, color=color)
|
|
|
|
# std_b plot
|
|
color = "cornflowerblue"
|
|
ax2.plot(stats_df.clen, stats_df.std_b, color=color)
|
|
|
|
# std_c plot
|
|
color = "royalblue"
|
|
ax2.plot(stats_df.clen, stats_df.std_c, color=color)
|
|
|
|
|
|
def plot_indexed_std_alpha_beta_gamma(stats_df, ax1, ax2):
|
|
# indexed images plot
|
|
color = "tab:red"
|
|
ax1.set_xlabel("clen")
|
|
ax1.set_ylabel("indexed", color=color)
|
|
ax1.plot(stats_df.clen, stats_df.indexed, color=color)
|
|
ax1.tick_params(axis="y", labelcolor=color)
|
|
|
|
# label color
|
|
color = "tab:green"
|
|
ax2.set_ylabel("alpha, beta, gamma st.deviation", color=color)
|
|
ax2.tick_params(axis='y', labelcolor=color)
|
|
|
|
# std_alpha plot
|
|
color = "limegreen"
|
|
ax2.plot(stats_df.clen, stats_df.std_alpha, color=color)
|
|
|
|
# std_beta plot
|
|
color = "darkgreen"
|
|
ax2.plot(stats_df.clen, stats_df.std_beta, color=color)
|
|
|
|
# std_gamma plot
|
|
color = "green"
|
|
ax2.plot(stats_df.clen, stats_df.std_gamma, color=color)
|
|
|
|
def main_coarse( lst, sample, lab6_geom_file, centre_clen, cell_file, steps_coarse, scan_name_coarse, step_size_coarse ):
|
|
|
|
#make sample list
|
|
cwd, sample_h5_file = make_sample(lst, sample)
|
|
|
|
# make list of clen steps above and below the central clen
|
|
step_range = make_step_range(centre_clen, step_size_coarse, steps_coarse)
|
|
|
|
# make directorys for results
|
|
print( "begin CrystFEL anaylsis of different clens" )
|
|
|
|
# loop to cycle through clen steps
|
|
for clen in step_range:
|
|
|
|
# move back to cwd
|
|
os.chdir( cwd )
|
|
|
|
print( "processing clen = {0}".format( clen ) )
|
|
# define process directory
|
|
proc_dir = "{0}/{1}/{2}".format( cwd, scan_name_coarse, clen )
|
|
|
|
# make process directory
|
|
make_process_dir(proc_dir)
|
|
|
|
# move to process directory
|
|
os.chdir( proc_dir )
|
|
|
|
# make geom file
|
|
clen_geom_file = geom_amend( lab6_geom_file, clen )
|
|
|
|
# make crystfel run file
|
|
cryst_run_file = write_crystfel_run( clen, sample_h5_file, clen_geom_file, cell_file )
|
|
|
|
# run crystfel file
|
|
subprocess.call( [ "sbatch", "-p", "day", "--cpus-per-task=32", "--", "./{0}".format( cryst_run_file ) ] )
|
|
print( "done" )
|
|
|
|
#wait for jobs to complete
|
|
check_job_status(username)
|
|
|
|
def main_fine( lst, lab6_geom_file, centre_clen, cell_file, steps_fine, scan_name_fine, step_size_fine ):
|
|
|
|
# set current working directory
|
|
os.chdir("/sf/cristallina/data/p20590/work/process/jhb/detector_refinement")
|
|
cwd = os.getcwd()
|
|
|
|
#define the sample_h5_file location for this function
|
|
sample_h5 = "h5_{0}_sample.lst".format(sample)
|
|
sample_h5_file = "{0}/{1}".format(cwd, sample_h5)
|
|
|
|
# make list of clen steps above and below the central clen
|
|
step_range = make_step_range(centre_clen, step_size_fine, steps_fine)
|
|
|
|
# make directorys for results
|
|
print( "begin CrystFEL anaylsis of different clens" )
|
|
|
|
# loop to cycle through clen steps
|
|
for clen in step_range:
|
|
|
|
# move back to cwd
|
|
os.chdir( cwd )
|
|
|
|
print( "processing clen = {0}".format( clen ) )
|
|
# define process directory
|
|
proc_dir = "{0}/{1}/{2}".format( cwd, scan_name_fine, clen )
|
|
|
|
# make process directory
|
|
make_process_dir(proc_dir)
|
|
|
|
# move to process directory
|
|
os.chdir( proc_dir )
|
|
|
|
# make geom file
|
|
clen_geom_file = geom_amend( lab6_geom_file, clen )
|
|
|
|
# make crystfel run file
|
|
cryst_run_file = write_crystfel_run( clen, sample_h5_file, clen_geom_file, cell_file )
|
|
|
|
# run crystfel file
|
|
subprocess.call( [ "sbatch", "-p", "day", "--cpus-per-task=32", "--", "./{0}".format( cryst_run_file ) ] )
|
|
print( "done" )
|
|
|
|
#wait for jobs to complete
|
|
check_job_status(username)
|
|
|
|
def scrub_main_coarse( top_dir_coarse ):
|
|
|
|
stats_df = scrub_helper(top_dir_coarse)
|
|
|
|
#print clen for minimum alpha, beta, and gamma values
|
|
min_alpha_clen, min_beta_clen, min_gamma_clen, min_c_clen, min_alpha_val, min_beta_val, min_gamma_val, min_c_val = find_clen_values(stats_df)
|
|
|
|
# plot results
|
|
fig, (ax1, ax3) = plt.subplots(1, 2)
|
|
ax2 = ax1.twinx()
|
|
ax4 = ax3.twinx()
|
|
|
|
plot_indexed_std(stats_df, ax1, ax2)
|
|
plot_indexed_std_alpha_beta_gamma(stats_df, ax3, ax4)
|
|
|
|
fig.tight_layout()
|
|
plt.show()
|
|
|
|
def scrub_main_fine( top_dir_fine ):
|
|
|
|
stats_df = scrub_helper(top_dir_fine)
|
|
|
|
#print clen for minimum alpha, beta, and gamma values
|
|
min_alpha_clen, min_beta_clen, min_gamma_clen, min_c_clen, min_alpha_val, min_beta_val, min_gamma_val, min_c_val = find_clen_values(stats_df)
|
|
|
|
#print suggested clen
|
|
suggested_clen = (min_alpha_clen + min_beta_clen + min_gamma_clen )/3
|
|
suggested_clen = round(suggested_clen, 4)
|
|
print ("The suggested clen = {0}".format(suggested_clen))
|
|
|
|
# plot results
|
|
fig, (ax1, ax3) = plt.subplots(1, 2)
|
|
ax2 = ax1.twinx()
|
|
ax4 = ax3.twinx()
|
|
|
|
plot_indexed_std(stats_df, ax1, ax2)
|
|
plot_indexed_std_alpha_beta_gamma(stats_df, ax3, ax4)
|
|
|
|
fig.tight_layout()
|
|
plt.show()
|
|
|
|
|
|
#location to which the data from coarse and fine scans will be saved
|
|
top_dir = "/sf/cristallina/data/p20590/work/process/jhb/detector_refinement"
|
|
scan_name_coarse = "coarse"
|
|
scan_name_fine = "fine"
|
|
top_dir_coarse = "{0}/{1}".format( top_dir, scan_name_coarse )
|
|
top_dir_fine = "{0}/{1}".format( top_dir, scan_name_fine )
|
|
|
|
#General parameters for the scans
|
|
lst = "/sf/cristallina/data/p20590/work/process/jhb/detector_refinement/acq0001.JF17T16V01.dark.lst"
|
|
lab6_geom_file = "/sf/cristallina/data/p20590/work/process/jhb/detector_refinement/8M_p-op_c-op_p20590.geom"
|
|
centre_clen = 0.122 # in m
|
|
cell_file = "/sf/cristallina/data/p20590/work/process/jhb/detector_refinement/hewl.cell"
|
|
username = "beale_j" #note that the timer only checks if the user has ANY jobs running,
|
|
#so the user should ONLY be running the jobs related to this script on the cluster
|
|
#to avoid a very long wait
|
|
|
|
#stepping parameters for coarse and fine scan (generally not to be changed)
|
|
sample = 500
|
|
steps_coarse = 20
|
|
step_size_coarse = 0.0005 # m
|
|
steps_fine = 50
|
|
step_size_fine = 0.00005 # m
|
|
|
|
#Calling the functions
|
|
main_coarse( lst, sample, lab6_geom_file, centre_clen, cell_file, steps_coarse, scan_name_coarse, step_size_coarse )
|
|
|
|
scrub_main_coarse( top_dir_coarse )
|
|
|
|
main_fine( lst, lab6_geom_file, centre_clen, cell_file, steps_fine, scan_name_fine, step_size_fine )
|
|
|
|
scrub_main_fine( top_dir_fine )
|
|
|