From d7fa7e25dac39748beb93e0635d78ed6f82ed27f Mon Sep 17 00:00:00 2001 From: beale_j Date: Fri, 28 Nov 2025 17:44:05 +0100 Subject: [PATCH] runs make mtz after partialator --- reduction_tools/partialator_mtz.py | 663 +++++++++++++++++++++++++++++ 1 file changed, 663 insertions(+) create mode 100644 reduction_tools/partialator_mtz.py diff --git a/reduction_tools/partialator_mtz.py b/reduction_tools/partialator_mtz.py new file mode 100644 index 0000000..a238927 --- /dev/null +++ b/reduction_tools/partialator_mtz.py @@ -0,0 +1,663 @@ +#!/usr/bin/python + +# author J.Beale + +""" +# aim +to merge .stream files and calculate statistics and MTZ + +# usage +python partialator.py -s + -n name (name of job - default = partialator) + -p pointgroup + -m model (unity or xsphere - default is unity) + -i iterations - number of iterations in partialator + -c + -b number of resolution bins - must be > 20 + -r high-res limt. Needs a default. Default set to 1.3 + -a max-adu. Default = 12000 + -v ra reservation name if available + -g spacegroup + -c list of cell lengths and angles to use - 59.3,59.3,153.1,90.0,90.0,90.0 + -r number of residues + +# output +- scaled/merged files +- an mtz file +- useful plots +- useful summerized .dat files +- log file of output +""" + +# modules +from sys import exit +import pandas as pd +import numpy as np +import subprocess +import os, errno +import time +import argparse +from tqdm import tqdm +import regex as re +import matplotlib.pyplot as plt +from scipy.optimize import curve_fit +import warnings +warnings.filterwarnings( "ignore", category=RuntimeWarning ) +from loguru import logger + +def submit_job( job_file, reservation ): + + # submit the job + if reservation: + print( "using a ra beamtime reservation = {0}".format( reservation ) ) + logger.info( "using ra reservation to process data = {0}".format( reservation ) ) + submit_cmd = [ "sbatch", "-p", "day", "--reservation={0}".format( reservation ), "--cpus-per-task=32", "--" , job_file ] + else: + submit_cmd = [ "sbatch", "-p", "day", "--cpus-per-task=32", "--" , job_file ] + logger.info( "using slurm command = {0}".format( submit_cmd ) ) + + try: + job_output = subprocess.check_output( submit_cmd ) + logger.info( "submited job = {0}".format( job_output ) ) + except subprocess.CalledProcessError as e: + print( "please give the correct ra reservation or remove the -v from the arguements" ) + exit() + + # scrub job id from - example Submitted batch job 742403 + pattern = r"Submitted batch job (\d+)" + job_id = re.search( pattern, job_output.decode().strip() ).group(1) + + return int( job_id ) + +def wait_for_jobs( job_ids, total_jobs ): + + with tqdm( total=total_jobs, desc="Jobs Completed", unit="job" ) as pbar: + while job_ids: + completed_jobs = set() + for job_id in job_ids: + status_cmd = [ "squeue", "-h", "-j", str( job_id ) ] + status = subprocess.check_output( status_cmd ) + if not status: + completed_jobs.add( job_id ) + pbar.update( 1 ) + job_ids.difference_update( completed_jobs ) + time.sleep( 2 ) + +def run_partialator( proc_dir, name, stream, pointgroup, model, iterations, adu ): + + # partialator file name + part_run_file = "{0}/partialator_{1}.sh".format( proc_dir, name ) + + # write file + part_sh = open( part_run_file, "w" ) + part_sh.write( "#!/bin/sh\n\n" ) + part_sh.write( "module purge\n" ) + part_sh.write( "module use MX unstable\n" ) + part_sh.write( "module load crystfel/0.10.2-rhel8\n" ) + part_sh.write( "partialator -i {0} \\\n".format( stream ) ) + part_sh.write( " -o {0}.hkl \\\n".format( name ) ) + part_sh.write( " -y {0} \\\n".format( pointgroup ) ) + part_sh.write( " --model={0} \\\n".format( model ) ) + part_sh.write( " --max-adu={0} \\\n".format( adu ) ) + part_sh.write( " -j 32 \\\n" ) + part_sh.write( " --iterations={0}\n\n".format( iterations ) ) + part_sh.close() + + # make file executable + subprocess.call( [ "chmod", "+x", "{0}".format( part_run_file ) ] ) + + # add partialator script to log + part_input = open( part_run_file, "r" ) + logger.info( "partialator input file =\n{0}".format( part_input.read() ) ) + part_input.close() + + # return partialator file name + return part_run_file + +def run_compare_check( proc_dir, name, cell, shells, part_h_res ): + + # check file name + check_run_file = "{0}/check_{1}.sh".format( proc_dir, name ) + + # write file + check_sh = open( check_run_file, "w" ) + check_sh.write( "#!/bin/sh\n\n" ) + check_sh.write( "module purge\n" ) + check_sh.write( "module use MX unstable\n" ) + check_sh.write( "module load crystfel/0.10.2-rhel8\n" ) + check_sh.write( "check_hkl --shell-file=mult.dat *.hkl -p {0} --nshells={1} --highres={2} &> check_hkl.log\n".format( cell, shells, part_h_res ) ) + check_sh.write( "check_hkl --ltest --ignore-negs --shell-file=ltest.dat *.hkl -p {0} --nshells={1} --highres={2} &> ltest.log\n".format( cell, shells, part_h_res ) ) + check_sh.write( "check_hkl --wilson --shell-file=wilson.dat *.hkl -p {0} --nshells={1} --highres={2} &> wilson.log\n".format( cell, shells, part_h_res ) ) + check_sh.write( "compare_hkl --fom=Rsplit --shell-file=Rsplit.dat *.hkl1 *hkl2 -p {0} --nshells={1} --highres={2} &> Rsplit.log\n".format( cell, shells, part_h_res ) ) + check_sh.write( "compare_hkl --fom=cc --shell-file=cc.dat *.hkl1 *hkl2 -p {0} --nshells={1} --highres={2} &> cc.log\n".format( cell, shells, part_h_res ) ) + check_sh.write( "compare_hkl --fom=ccstar --shell-file=ccstar.dat *.hkl1 *hkl2 -p {0} --nshells={1} --highres={2} &> ccstar.log\n".format( cell, shells, part_h_res ) ) + check_sh.close() + + # make file executable + subprocess.call( [ "chmod", "+x", "{0}".format( check_run_file ) ] ) + + # add check script to log + check_input = open( check_run_file, "r" ) + logger.info( "check input file =\n{0}".format( check_input.read() ) ) + check_input.close() + + # return check file name + return check_run_file + +def make_process_dir( dir ): + # make process directory + try: + os.makedirs( dir ) + except OSError as e: + if e.errno != errno.EEXIST: + raise + +def summary_stats( cc_dat, ccstar_dat, mult_dat, rsplit_dat, wilson_dat ): + + # read all files into pd + # function to sort out different column names + def read_dat( dat, var ): + + # different columns names of each dat file + if var == "cc": + cols = [ "d(nm)", "cc", "nref", "d", "min", "max" ] + elif var == "ccstar": + cols = [ "1(nm)", "ccstar", "nref", "d", "min", "max" ] + elif var == "mult": + cols = [ "d(nm)", "nref", "poss", "comp", "obs", + "mult", "snr", "I", "d", "min", "max" ] + elif var == "rsplit": + cols = [ "d(nm)", "rsplit", "nref", "d", "min", "max" ] + elif var == "wilson": + cols = [ "bin", "s2", "d", "lnI", "nref" ] + + df = pd.read_csv( dat, names=cols, skiprows=1, sep="\s+" ) + + return df + + # make df + cc_df = read_dat( cc_dat, "cc" ) + ccstar_df = read_dat( ccstar_dat, "ccstar" ) + mult_df = read_dat( mult_dat, "mult" ) + rsplit_df = read_dat( rsplit_dat, "rsplit" ) + wilson_df = read_dat( wilson_dat, "wilson" ) + + # remove unwanted cols + cc_df = cc_df[ [ "cc" ] ] + ccstar_df = ccstar_df[ [ "ccstar" ] ] + rsplit_df = rsplit_df[ [ "rsplit" ] ] + wilson_df = wilson_df[ [ "lnI" ] ] + + # merge dfs + stats_df = pd.concat( [ mult_df, cc_df, ccstar_df, rsplit_df, wilson_df ], axis=1, join="inner" ) + + # make 1/d, 1/d^2 column + stats_df[ "1_d" ] = 1 / stats_df.d + stats_df[ "1_d2" ] = 1 / stats_df.d**2 + + # change nan to 0 + stats_df = stats_df.fillna(0) + + return stats_df + +def get_metric( d2_series, cc_series, cut_off ): + + # Define the tanh function from scitbx + def tanh(x, r, s0): + z = (x - s0)/r + return 0.5 * ( 1 - np.tanh(z) ) + + def arctanh( y, r, s0 ): + return r * np.arctanh( 1 - 2*y ) + s0 + + # Fit the tanh to the data + params, covariance = curve_fit( tanh, d2_series, cc_series ) + + # Extract the fitted parameters + r, s0 = params + + # calculate cut-off point + cc_stat = arctanh( cut_off, r, s0 ) + # covert back from 1/d2 to d + cc_stat = np.sqrt( ( 1 / cc_stat ) ) + + # get curve for plotting + cc_tanh = tanh( d2_series, r, s0 ) + + return round( cc_stat, 3 ), cc_tanh + +def get_overall_cc(): + + # open cc log file + cc_log_file = open( "cc.log" ) + cc_log = cc_log_file.read() + + # regex example = Overall CC = 0.5970865 + overcc_pattern = r"Overall\sCC\s=\s(\d\.\d+)" + try: + overcc = re.search( overcc_pattern, cc_log ).group(1) + except AttributeError as e: + overcc = np.nan + + return overcc + +def get_overall_rsplit(): + + # open rsplit log file + rsplit_log_file = open( "Rsplit.log" ) + rsplit_log = rsplit_log_file.read() + + # regex example = Overall Rsplit = 54.58 % + overrsplit_pattern = r"Overall\sRsplit\s=\s(\d+\.\d+)" + try: + overrsplit = re.search( overrsplit_pattern, rsplit_log ).group(1) + except AttributeError as e: + overrsplit = np.nan + + return overrsplit + +def get_b(): + + # open rsplit log file + wilson_log_file = open( "wilson.log" ) + wilson_log = wilson_log_file.read() + + # regex example = B = 41.63 A^2 + b_factor_pattern = r"B\s=\s(\d+\.\d+)\sA" + try: + b_factor = re.search( b_factor_pattern, wilson_log ).group(1) + except AttributeError as e: + b_factor = np.nan + + return b_factor + +def get_globals(): + + # open rsplit log file + check_log_file = open( "check_hkl.log" ) + check_log = check_log_file.read() + + # regex example => Overall = 9.299098 + # regex example => Overall redundancy = 577.663604 measurements + # regex example => Overall completeness = 97.852126 % + snr_pattern = r"Overall\s\\s=\s(\d+\.\d+)" + mult_pattern = r"Overall\sredundancy\s=\s(\d+\.\d+)\smeasurements" + comp_pattern = r"Overall\scompleteness\s=\s(\d+\.\d+)" + try: + snr = re.search( snr_pattern, check_log ).group(1) + mult = re.search( mult_pattern, check_log ).group(1) + comp = re.search( comp_pattern, check_log ).group(1) + except AttributeError as e: + snr = np.nan + mult = np.nan + comp = np.nan + + return mult, snr, comp + +def summary_fig( stats_df, cc_tanh, ccstar_tanh, cc_cut, ccstar_cut ): + + def dto1_d( x ): + return 1/x + + # plot results + cc_fig, axs = plt.subplots(2, 2) + cc_fig.suptitle( "cc and cc* vs resolution" ) + + # cc plot + color = "tab:red" + axs[0,0].set_xlabel( "1/d (1/A)" ) + axs[0,0].set_ylabel( "CC", color=color ) + axs[0,0].set_ylim( 0, 1 ) + axs[0,0].axhline( y = 0.3, color="black", linestyle = "dashed" ) + # plot cc + axs[0,0].plot( stats_df[ "1_d" ], stats_df.cc, color=color ) + # plot fit + axs[0,0].plot( stats_df[ "1_d" ], cc_tanh, color="tab:grey", linestyle = "dashed" ) + sax1 = axs[0,0].secondary_xaxis( 'top', functions=( dto1_d, dto1_d ) ) + sax1.set_xlabel('d (A)') + axs[0,0].tick_params( axis="y", labelcolor=color ) + axs[0,0].text( 0.1, 0.1, "CC0.5 @ 0.3 = {0}".format( cc_cut ), fontsize = 8 ) + + # cc* plot + color = "tab:blue" + axs[0,1].set_xlabel( "1/d (1/A)" ) + axs[0,1].set_ylabel( "CC*", color=color ) + axs[0,1].set_ylim( 0, 1 ) + axs[0,1].axhline( y = 0.7, color="black", linestyle = "dashed" ) + axs[0,1].plot( stats_df[ "1_d" ], stats_df.ccstar, color=color ) + # plot fit + axs[0,1].plot( stats_df[ "1_d" ], ccstar_tanh, color="tab:grey", linestyle = "dashed" ) + sax2 = axs[0,1].secondary_xaxis( 'top', functions=( dto1_d, dto1_d ) ) + sax2.set_xlabel('d (A)') + axs[0,1].tick_params( axis='y', labelcolor=color ) + axs[0,1].text( 0.1, 0.1, "CC* @ 0.7 = {0}".format( ccstar_cut ) , fontsize = 8 ) + + # rsplit plot + color = "tab:green" + axs[1,0].set_xlabel( "1/d (1/A)" ) + axs[1,0].set_ylabel( "Rsplit", color=color ) + axs[1,0].plot( stats_df[ "1_d" ], stats_df.rsplit, color=color ) + sax3 = axs[1,0].secondary_xaxis( 'top', functions=( dto1_d, dto1_d ) ) + sax3.set_xlabel( 'd (A)' ) + axs[1,0].tick_params( axis='y', labelcolor=color ) + + # wilson plot + color = "tab:purple" + axs[1,1].set_xlabel( "1/d**2 (1/A**2)" ) + axs[1,1].set_ylabel( "lnI", color=color ) + axs[1,1].plot( stats_df[ "1_d2" ], stats_df.lnI, color=color ) + axs[1,1].tick_params( axis='y', labelcolor=color ) + + # save figure + plt.tight_layout() + plt.savefig( "plots.png" ) + +def make_mtz( hklout_file, mtzout_file, cell_constants, spacegroup, residues, res_range ): + + # make_mtz file name + mtz_run_file = "make_mtz.sh" + + # make F file name + Fout_file = os.path.splitext( mtzout_file )[0] + "_F.mtz" + + # write file + mtz_sh = open( mtz_run_file, "w" ) + mtz_sh.write( "#!/bin/sh\n\n" ) + mtz_sh.write( "module purge\n" ) + mtz_sh.write( "module load ccp4/8.0\n\n" ) + mtz_sh.write( "f2mtz HKLIN {0} HKLOUT {1} << EOF_hkl > f2mtz.log\n".format( hklout_file, mtzout_file ) ) + mtz_sh.write( "TITLE Reflections from CrystFEL\n" ) + mtz_sh.write( "NAME PROJECT {0} CRYSTAL {1} DATASET {2}\n".format( "SwissFEL", "XTAL", "DATA" ) ) + mtz_sh.write( "CELL {0} {1} {2} {3} {4} {5}\n".format( cell_constants[0], cell_constants[1], cell_constants[2], cell_constants[3], cell_constants[4], cell_constants[5] ) ) + mtz_sh.write( "SYMM {0}\n".format( spacegroup ) ) + mtz_sh.write( "SKIP 3\n" ) + mtz_sh.write( "LABOUT H K L I_stream SIGI_stream\n" ) + mtz_sh.write( "CTYPE H H H J Q\n" ) + mtz_sh.write( "FORMAT '(3(F4.0,1X),F10.2,10X,F10.2)'\n" ) + mtz_sh.write( "SKIP 3\n" ) + mtz_sh.write( "EOF_hkl\n\n\n" ) + mtz_sh.write( "echo 'done'\n" ) + mtz_sh.write( "echo 'I and SIGI from CrystFEL stream saved as I_stream and SIGI_stream'\n" ) + mtz_sh.write( "echo 'I filename = {0}'\n\n\n".format( mtzout_file ) ) + mtz_sh.write( "echo 'running truncate'\n" ) + mtz_sh.write( "echo 'setting resolution range to {0}-{1}'\n".format( res_range[0], res_range[1] ) ) + mtz_sh.write( "echo 'assuming that there are {0} residues in assymetric unit'\n\n\n".format( residues ) ) + mtz_sh.write( "truncate HKLIN {0} HKLOUT {1} << EOF_F > truncate.log\n".format( mtzout_file, Fout_file ) ) + mtz_sh.write( "truncate YES\n" ) + mtz_sh.write( "anomalous NO\n" ) + mtz_sh.write( "nresidue {0}\n".format( residues ) ) + mtz_sh.write( "resolution {0} {1}\n".format( res_range[0], res_range[1] ) ) + mtz_sh.write( "plot OFF\n" ) + mtz_sh.write( "labin IMEAN=I_stream SIGIMEAN=SIGI_stream\n" ) + mtz_sh.write( "labout F=F_stream SIGF=SIGF_stream\n" ) + mtz_sh.write( "end\n" ) + mtz_sh.write( "EOF_F\n\n\n" ) + mtz_sh.write( "echo 'done'\n" ) + mtz_sh.write( "echo 'I_stream and SIGI_stream from f2mtz converted to F_stream and F_stream'\n" ) + mtz_sh.write( "echo 'F filename = {0} (contains both Is and Fs)'".format( Fout_file ) ) + mtz_sh.close() + + # make file executable + subprocess.call( [ "chmod", "+x", "{0}".format( mtz_run_file ) ] ) + + # run + subprocess.call( [ "./{0}".format( mtz_run_file ) ] ) + +def cut_hkl_file( hklin_file, hklout_file ): + + # setup + hklout = open( hklout_file, 'w') + collect_lines = True + + # Open the input file for reading + with open( hklin_file, 'r') as f: + + for line in f: + if line.strip() == 'End of reflections': + collect_lines = False # Stop collecting lines + if collect_lines: + hklout.write( line ) + + hklout.close() + +def write_mtz( hklin_file, hklout_file, mtzout, cell_constants, spacegroup, residues, res_range ): + + # remove final lines from crystfel hkl out + print( "removing final lines from crystfel hklin" ) + cut_hkl_file( hklin_file, hklout_file ) + print( "done" ) + + # running make mtz + print( "making mtz" ) + print( "using cell constants\n{0} {1} {2} A {3} {4} {5} deg".format( cell_constants[0], cell_constants[1], cell_constants[2], cell_constants[3], cell_constants[4], cell_constants[5] )) + make_mtz( hklout_file, mtzout, cell_constants, spacegroup, residues, res_range ) + print( "done" ) + + # remove *cut.hkl out + cwd = os.getcwd() + files = os.listdir( cwd ) + for file in files: + if file.endswith( "cut.hkl" ): + os.remove( file ) + +def read_cell( cell_file ): + + # function to get cell parameter + def get_parameter( line, parameter ): + + # general parameter search + pattern = r"{0}\s=\s(\d+\.\d+)".format( parameter ) + value = re.search( pattern, line ).group(1) + return value + + # loop through file and get parameters + cell = open( cell_file, "r" ) + for line in cell: + if line.startswith( "a " ): + a = float( get_parameter( line, "a" ) ) + if line.startswith( "b " ): + b = float( get_parameter( line, "b" ) ) + if line.startswith( "c " ): + c = float( get_parameter( line, "c" ) ) + if line.startswith( "al " ): + alpha = float( get_parameter( line, "al" ) ) + if line.startswith( "be " ): + beta = float( get_parameter( line, "be" ) ) + if line.startswith( "ga " ): + gamma = float( get_parameter( line, "ga" ) ) + + cell_constants = [ a, b, c, alpha, beta, gamma ] + + return cell_constants + +def main( cwd, name, stream, pointgroup, model, iterations, cell, shells, part_h_res, adu, spacegroup, residues, reservation ): + + # submitted job set + submitted_job_ids = set() + + part_dir = "{0}/{1}".format( cwd, name ) + # make part directories + make_process_dir( part_dir ) + + # move to part directory + os.chdir( part_dir ) + + print( "making partialator file" ) + # make partialator run file + part_run_file = run_partialator( part_dir, name, stream, pointgroup, model, iterations, adu ) + check_run_file = run_compare_check( part_dir, name, cell, shells, part_h_res ) + + # submit job + job_id = submit_job( part_run_file, reservation ) + print( f"job submitted: {0}".format( job_id ) ) + submitted_job_ids.add( job_id ) + + # use progress bar to track job completion + time.sleep(10) + wait_for_jobs( submitted_job_ids, 1 ) + print( "slurm processing done" ) + + # now run the check and compare scripts + print( "running check/compare" ) + check_job_id = submit_job( check_run_file, reservation ) + print( f"job submitted: {0}".format( check_job_id ) ) + submitted_job_ids.add( check_job_id ) + time.sleep(10) + wait_for_jobs( submitted_job_ids, 1 ) + print( "done" ) + + # stats files names + cc_dat = "cc.dat" + ccstar_dat = "ccstar.dat" + mult_dat = "mult.dat" + rsplit_dat = "Rsplit.dat" + wilson_dat = "wilson.dat" + + # make summary data table + stats_df = summary_stats( cc_dat, ccstar_dat, mult_dat, rsplit_dat, wilson_dat ) + logger.info( "stats table from .dat file =\n{0}".format( stats_df.to_string() ) ) + print_df = stats_df[ [ "1_d", "d", "min", + "max", "nref", "poss", + "comp", "obs", "mult", + "snr", "I", "rsplit", "cc", "ccstar" ] ] + print_df.to_csv( "summary_table.csv", sep="\t", index=False ) + + # calculate cc metrics + cc_cut, cc_tanh = get_metric( stats_df[ "1_d2" ], stats_df.cc, 0.3 ) + ccstar_cut, ccstar_tanh = get_metric( stats_df[ "1_d2" ], stats_df.ccstar, 0.7 ) + print( "resolution at CC0.5 at 0.3 = {0}".format( cc_cut ) ) + print( "resolution at CC* at 0.7 = {0}".format( ccstar_cut ) ) + logger.info( "resolution at CC0.5 at 0.3 = {0}".format( cc_cut ) ) + logger.info( "resolution at CC* at 0.7 = {0}".format( ccstar_cut ) ) + + # scrub other metrics + overcc = get_overall_cc() + overrsplit = get_overall_rsplit() + b_factor = get_b() + overall_mult, overall_snr, overall_comp = get_globals() + + logger.info( "overall CC0.5 = {0}".format( overcc ) ) + logger.info( "overall Rsplit = {0}".format( overrsplit ) ) + logger.info( "overall B = {0}".format( b_factor ) ) + logger.info( "overall mult = {0}".format( overall_mult ) ) + + # show plots + summary_fig( stats_df, cc_tanh, ccstar_tanh, cc_cut, ccstar_cut ) + + # make mtz + hklin_file = "{0}.hkl".format( name ) + hklout_file = "{0}_cut.hkl".format( name ) + mtzout = "{0}.mtz".format( name ) + res_range = ( 50.0, cc_cut ) + cell_constants = read_cell( cell ) + write_mtz( hklin_file, hklout_file, mtzout, cell_constants, spacegroup, residues, res_range ) + + # move back to top dir + os.chdir( cwd ) + +def list_of_floats(arg): + return list(map(float, arg.split(','))) + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument( + "-n", + "--name", + help="name of partialator run, also name of folder where data will be processed.", + type=str, + required=True + ) + parser.add_argument( + "-s", + "--stream_file", + help="path to stream file", + type=os.path.abspath, + required=True + ) + parser.add_argument( + "-p", + "--pointgroup", + help="pointgroup used by CrystFEL for partialator run", + type=str, + required=True + ) + parser.add_argument( + "-m", + "--model", + help="model used partialator, e.g., unity or xsphere. Default = unity.", + type=str, + default="unity" + ) + parser.add_argument( + "-i", + "--iterations", + help="number of iterations used for partialator run. Default = 1.", + type=int, + default=1 + ) + parser.add_argument( + "-c", + "--cell_file", + help="path to CrystFEL cell file for partialator.", + type=os.path.abspath, + required=True + ) + parser.add_argument( + "-b", + "--bins", + help="number of resolution bins to use. Should be more than 20. Default = 20.", + type=int, + default=20 + ) + parser.add_argument( + "-r", + "--resolution", + help="high res limit - need something here. Default set to 1.3.", + type=float, + default=1.3 + ) + parser.add_argument( + "-a", + "--max_adu", + help="maximum detector counts to allow. Default is 12000.", + type=int, + default=12000 + ) + parser.add_argument( + "-g", + "--spacegroup", + help="spacegroup for making mtz, e.g P41212", + type=str, + required=True + ) + parser.add_argument( + "-R", + "--residues", + help="number of residues for truncate, e.g., hewl = 129", + type=int, + required=True + ) + parser.add_argument( + "-v", + "--reservation", + help="reservation name for ra cluster. Usually along the lines of P11111_2024-12-10", + type=str, + default=None + ) + parser.add_argument( + "-d", + "--debug", + help="output debug to terminal.", + type=bool, + default=False + ) + args = parser.parse_args() + # set loguru + if not args.debug: + logger.remove() + logfile = "{0}.log".format( args.name ) + logger.add( logfile, format="{message}", level="INFO") + # run main + cwd = os.getcwd() + print( "top working directory = {0}".format( cwd ) ) + main( cwd, args.name, args.stream_file, args.pointgroup, args.model, args.iterations, args.cell_file, args.bins, args.resolution, args.max_adu, args.spacegroup, args.residues, args.reservation ) \ No newline at end of file