organised tools into directories - made 16M pyfai script work
This commit is contained in:
107
pyfai-tools/convert-scan-for-pyfai-16M.py
Normal file
107
pyfai-tools/convert-scan-for-pyfai-16M.py
Normal file
@@ -0,0 +1,107 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# author J.Beale
|
||||
|
||||
"""
|
||||
# aim
|
||||
- -16M=varient for large detectors
|
||||
make image file to input into pyFAI for initial detector beam-centre and detector distance calibration
|
||||
refer to Cristallina8M-calibration for complete protocol
|
||||
https://docs.google.com/document/d/1RoeUUogvRxX4M6uqGwkjf3dVJBabiMUx4ZxwcA5e9Dc/edit#
|
||||
|
||||
# protocol
|
||||
take scan of LaB6
|
||||
## IMPORTANT ##
|
||||
- save image as photon-counts - in slic/run_control scale=beam energy
|
||||
- detector_geometry=TRUE - saves detector panels in their correct orientation
|
||||
## scan inputs ##
|
||||
- <0.01 trans
|
||||
- motor scan > 10 um per step
|
||||
- 10 images per step, 100 steps
|
||||
- use scan.json as input for this script
|
||||
|
||||
# usage
|
||||
python make-tiff.py -j <jugfrau-name> -s <path to scan file> -n <name of output file>
|
||||
|
||||
# output
|
||||
creates a .npy file that can be loaded directly into pyFAI
|
||||
"""
|
||||
|
||||
# modules
|
||||
from matplotlib import pyplot as plt
|
||||
import numpy as np
|
||||
from sfdata import SFScanInfo
|
||||
from tqdm import tqdm
|
||||
import argparse
|
||||
|
||||
def convert_image( path_to_json, jungfrau, name ):
|
||||
|
||||
# opens scan
|
||||
print( "opening scane" )
|
||||
scan = SFScanInfo( path_to_json )
|
||||
|
||||
# steps in scane
|
||||
nsteps = len(scan)
|
||||
|
||||
# define step ch and im_shape
|
||||
step = scan[0]
|
||||
ch = step[jungfrau]
|
||||
img_shape = ch[0].shape
|
||||
|
||||
print("stepping through scan and averaging images at each step")
|
||||
# step through scan and average files from each positions
|
||||
imgs_shape = (nsteps, *img_shape)
|
||||
imgs = np.empty(imgs_shape)
|
||||
for i, subset in tqdm(enumerate(scan)):
|
||||
|
||||
# go through data in_batches so you don't run out of memory
|
||||
ch = subset[jungfrau]
|
||||
mean = np.zeros(img_shape)
|
||||
for _indices, batch in ch.in_batches(size=2):
|
||||
mean += np.mean(batch, axis=0)
|
||||
|
||||
# take mean of means for batch opened data
|
||||
imgs[i] = mean
|
||||
|
||||
print( "done" )
|
||||
# sum averaged imaged
|
||||
print( "final average" )
|
||||
mean_image = imgs.mean(axis=0)
|
||||
print("done")
|
||||
|
||||
# output to file
|
||||
print( "saving to .npy = {0}".format( name ) )
|
||||
np.save( "{0}.npy".format( name ), mean_image )
|
||||
print( "done" )
|
||||
|
||||
# create plot of summed, averaged scan
|
||||
fig, ax = plt.subplots()
|
||||
ax.imshow(mean_image, vmin=0, vmax=1000)
|
||||
plt.show()
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"-j",
|
||||
"--jungfrau",
|
||||
help="name of the jungfrau used, i.e., JF17T16V01 for Cristallina MX",
|
||||
type=str,
|
||||
default="JF17T16V01"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-s",
|
||||
"--scan",
|
||||
help="path to json scan file",
|
||||
type=str,
|
||||
default="/sf/cristallina/data/p20590/raw/run0003/meta/scan.json"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-n",
|
||||
"--name",
|
||||
help="name of output file",
|
||||
type=str,
|
||||
default="mean_scan"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
convert_image( args.scan, args.jungfrau, args.name )
|
||||
85
pyfai-tools/convert-scan-for-pyfai.py
Normal file
85
pyfai-tools/convert-scan-for-pyfai.py
Normal file
@@ -0,0 +1,85 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# author J.Beale
|
||||
|
||||
"""
|
||||
# aim
|
||||
make image file to input into pyFAI for initial detector beam-centre and detector distance calibration
|
||||
refer to Cristallina8M-calibration for complete protocol
|
||||
https://docs.google.com/document/d/1RoeUUogvRxX4M6uqGwkjf3dVJBabiMUx4ZxwcA5e9Dc/edit#
|
||||
|
||||
# protocol
|
||||
take scan of LaB6
|
||||
## IMPORTANT ##
|
||||
- save image as photon-counts - in slic/run_control scale=beam energy
|
||||
- detector_geometry=TRUE - saves detector panels in their correct orientation
|
||||
## scan inputs ##
|
||||
- <0.01 trans
|
||||
- motor scan > 10 um per step
|
||||
- 10 images per step, 100 steps
|
||||
- use scan.json as input for this script
|
||||
|
||||
# usage
|
||||
python make-tiff.py -j <jugfrau-name> -s <path to scan file> -n <name of output file>
|
||||
|
||||
# output
|
||||
creates a .npy file that can be loaded directly into pyFAI
|
||||
"""
|
||||
|
||||
# modules
|
||||
from matplotlib import pyplot as plt
|
||||
import numpy as np
|
||||
from sfdata import SFScanInfo
|
||||
from tqdm import tqdm
|
||||
import argparse
|
||||
|
||||
def convert_image( path_to_json, jungfrau, name ):
|
||||
|
||||
# opens scan
|
||||
scan = SFScanInfo( path_to_json )
|
||||
|
||||
# step through scan and average files from each positions
|
||||
mean_image = []
|
||||
for step in tqdm( enumerate(scan) ):
|
||||
# step is a SFDataFiles object
|
||||
subset = step[1]
|
||||
mean = np.mean( subset[ jungfrau ].data, axis=0 )
|
||||
mean_image.append(mean)
|
||||
|
||||
# sum averaged imaged
|
||||
sum_image = np.sum( mean_image, axis=0 )
|
||||
|
||||
# output to file
|
||||
np.save( "{0}.npy".format( name ), sum_image )
|
||||
|
||||
# create plot of summed, averaged scan
|
||||
fig, ax = plt.subplots()
|
||||
ax.imshow(sum_image, vmin=0, vmax=1000)
|
||||
plt.show()
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"-j",
|
||||
"--jungfrau",
|
||||
help="name of the jungfrau used, i.e., JF17T16V01 for Cristallina MX",
|
||||
type=str,
|
||||
default="JF17T16V01"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-s",
|
||||
"--scan",
|
||||
help="path to json scan file",
|
||||
type=str,
|
||||
default="/sf/cristallina/data/p20590/raw/run0003/meta/scan.json"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-n",
|
||||
"--name",
|
||||
help="name of output file",
|
||||
type=str,
|
||||
default="sum_mean_scan"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
convert_image( args.scan, args.jungfrau, args.name )
|
||||
12
pyfai-tools/sum_mean_scan.poni
Normal file
12
pyfai-tools/sum_mean_scan.poni
Normal file
@@ -0,0 +1,12 @@
|
||||
# Nota: C-Order, 1 refers to the Y axis, 2 to the X axis
|
||||
# Calibration done at Thu Mar 16 16:56:31 2023
|
||||
poni_version: 2
|
||||
Detector: Detector
|
||||
Detector_config: {"pixel1": 7.5e-08, "pixel2": 7.5e-08, "max_shape": [3333, 3212]}
|
||||
Distance: 0.00012198044363190573
|
||||
Poni1: 0.0001245625996392014
|
||||
Poni2: 0.00012028397296269736
|
||||
Rot1: -0.0013017934228372007
|
||||
Rot2: 0.0011373661117621663
|
||||
Rot3: -0.00014487988888865335
|
||||
Wavelength: 1.0088217935980494e-10
|
||||
168
pyfai-tools/update-geom-from-lab6.py
Normal file
168
pyfai-tools/update-geom-from-lab6.py
Normal file
@@ -0,0 +1,168 @@
|
||||
#!/usr/bin/python
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import regex as re
|
||||
from scipy import constants
|
||||
import argparse
|
||||
from datetime import datetime
|
||||
date = datetime.today().strftime('%y%m%d')
|
||||
|
||||
|
||||
def calculate_new_corner_positions( beam_x, beam_y ):
|
||||
|
||||
# make df of current corner positions
|
||||
positions = { "current_x" : [ 607, 1646, 607, 1646, 607, 1646, 538, 1577, 538, 1577, 538, 1577, 538, 3212, 514, 3143 ],
|
||||
"current_y" : [ 0, 69, 550, 619, 1100, 1169, 1650, 1719, 2200, 2269, 2750, 2819, 597, 667, 1636, 1706 ]
|
||||
}
|
||||
corner_df = pd.DataFrame( positions )
|
||||
|
||||
# calculate new corner positions
|
||||
corner_df[ "new_x" ] = corner_df.current_x.subtract( beam_x )
|
||||
corner_df[ "new_y" ] = corner_df.current_y.subtract( beam_y )
|
||||
|
||||
# drop old positions
|
||||
corner_df = corner_df[[ "new_x", "new_y" ]]
|
||||
|
||||
return corner_df
|
||||
|
||||
def scrub_poni( path_to_poni_file ):
|
||||
|
||||
# open poni file
|
||||
poni_file = open( path_to_poni_file, "r" ).read()
|
||||
|
||||
# regex patterns to scrub poni data
|
||||
clen_m_pattern = r"Distance:\s(\d\.\d*)"
|
||||
poni1_m_pattern = r"Poni1:\s(\d\.\d*)"
|
||||
poni2_m_pattern = r"Poni2:\s(\d\.\d*)"
|
||||
wave_pattern = r"Wavelength:\s(\d\.\d*)e(-\d+)"
|
||||
|
||||
# regex seach
|
||||
clen = re.search( clen_m_pattern, poni_file ).group( 1 )
|
||||
poni1_m = re.search( poni1_m_pattern, poni_file ).group( 1 )
|
||||
poni2_m = re.search( poni2_m_pattern, poni_file ).group( 1 )
|
||||
wave = re.search( wave_pattern, poni_file ).group( 1, 2 )
|
||||
|
||||
# calulate proper wavelength
|
||||
wave = float(wave[0]) * np.float_power( 10, int( wave[1]) )
|
||||
|
||||
# calculate beam_centre
|
||||
poni1_p = float( poni1_m ) / 0.000000075
|
||||
poni2_p = float( poni2_m ) / 0.000000075
|
||||
|
||||
# calculate beam energy in eV
|
||||
eV = ( ( constants.c * constants.h ) / wave ) / constants.electron_volt
|
||||
|
||||
# return poni1 = y, poni2 = x and energy
|
||||
return poni1_p, poni2_p, eV, round( float( clen )*1000, 5 )
|
||||
|
||||
|
||||
def write_new_positions( path_to_geom, beam_x, beam_y, clen, energy ):
|
||||
|
||||
# open current geometry file
|
||||
current_geom_file = open( path_to_geom, "r" ).read()
|
||||
|
||||
# calculate new corner positions
|
||||
corner_df = calculate_new_corner_positions( beam_x, beam_y )
|
||||
|
||||
# replace current corner positions with new ones
|
||||
for i in range(0, 16):
|
||||
|
||||
# x and y positions
|
||||
new_x, new_y = round( corner_df.new_x[i], 3 ), round( corner_df.new_y[i], 3 )
|
||||
|
||||
# input new x position
|
||||
current_pattern_x = r"p" + re.escape( str(i) ) + r"/corner_x = -?\d+\.\d+"
|
||||
new_pattern_x = r"p" + re.escape( str(i) ) + r"/corner_x = " + str( new_x )
|
||||
current_geom_file = re.sub( current_pattern_x, new_pattern_x, current_geom_file )
|
||||
|
||||
# input new y position
|
||||
current_pattern_y = r"p" + re.escape( str(i) ) + r"/corner_y = -?\d+\.\d+"
|
||||
new_pattern_y = r"p" + re.escape( str(i) ) + r"/corner_y = " + str( new_y )
|
||||
current_geom_file = re.sub( current_pattern_y, new_pattern_y, current_geom_file )
|
||||
|
||||
# input new clen
|
||||
current_clen = r"clen = \d\.\d+"
|
||||
new_clen = r"clen = " + str( clen )
|
||||
current_geom_file = re.sub( current_clen, new_clen, current_geom_file )
|
||||
|
||||
# input new energy
|
||||
current_energy = r"photon_energy = \d+"
|
||||
new_energy = r"photon_energy = " + str( energy )
|
||||
current_geom_file = re.sub( current_energy, new_energy, current_geom_file )
|
||||
|
||||
# create geom new file
|
||||
geom_start = path_to_geom[:-5]
|
||||
new_geom_name = "{0}_{1}.geom".format( geom_start, date )
|
||||
|
||||
# write new geom file
|
||||
f = open( new_geom_name, "w" )
|
||||
f.write( current_geom_file )
|
||||
f.close()
|
||||
|
||||
# return new_geom_name
|
||||
return new_geom_name
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"-g",
|
||||
"--geom",
|
||||
help="give the path to the cristallina 8M geom file to be updated",
|
||||
type=str,
|
||||
default="/sf/cristallina/data/p20558/work/geom/optimised_geom_file/p20558_hewl_op.geom",
|
||||
)
|
||||
parser.add_argument(
|
||||
"-x",
|
||||
"--beam_x",
|
||||
help="beam_x in pixels",
|
||||
type=float,
|
||||
default=1603.73
|
||||
)
|
||||
parser.add_argument(
|
||||
"-y",
|
||||
"--beam_y",
|
||||
help="beam_y in pixels",
|
||||
type=float,
|
||||
default=1661.99
|
||||
)
|
||||
parser.add_argument(
|
||||
"-c",
|
||||
"--clen",
|
||||
help="detector distance in m",
|
||||
type=int,
|
||||
default=0.111
|
||||
)
|
||||
parser.add_argument(
|
||||
"-e",
|
||||
"--energy",
|
||||
help="photon energy",
|
||||
type=int,
|
||||
default=12400
|
||||
)
|
||||
parser.add_argument(
|
||||
"-i",
|
||||
"--poni",
|
||||
help="path to poni file",
|
||||
type=str,
|
||||
)
|
||||
parser.add_argument(
|
||||
"-p",
|
||||
"--p-group",
|
||||
help="p-group name",
|
||||
type=str,
|
||||
)
|
||||
args = parser.parse_args()
|
||||
# run geom converter
|
||||
if args.poni is not None:
|
||||
print( "reading poni file" )
|
||||
beam_y, beam_x, eV, clen = scrub_poni( args.poni )
|
||||
print( "beam x, beam_y = {0}, {1}\nphoton_energy = {2}\nclen = {3}".format( beam_x, beam_y, eV, clen ) )
|
||||
new_geom_name = write_new_positions( args.geom, beam_x, beam_y, clen, eV )
|
||||
print( "updated .geom file with poni calculations\n new .geom = {0}".format( new_geom_name ) )
|
||||
else:
|
||||
print( "manually input positions" )
|
||||
print( "beam x, beam_y = {0}, {1}\nphoton_energy = {2}\nclen = {3}".format( args.beam_x, args.beam_y, args.energy, args.clen ) )
|
||||
new_geom_name = write_new_positions( args.geom, args.beam_x, args.beam_y, args.clen, args.energy )
|
||||
print( "updated .geom file with poni calculations\nnew .geom = {0}".format( new_geom_name ) )
|
||||
Reference in New Issue
Block a user