organised tools into directories - made 16M pyfai script work

This commit is contained in:
Beale John Henry
2023-03-22 14:03:00 +01:00
parent cfcc9b5941
commit b1ce7a2215
7 changed files with 899 additions and 0 deletions

View File

@@ -0,0 +1,155 @@
# modules
import pandas as pd
import regex as re
import os
import numpy as np
import matplotlib.pyplot as plt
def scrub_clen( stream_pwd ):
# get clen from stream name
# example - /sf/cristallina/data/p20590/work/process/jhb/detector_refinement/coarse_scan/0.115/0.115.stream
# scrub clen and return - else nan
try:
pattern = r"0\.\d+/(0\.\d+)\.stream"
re_search = re.search( pattern, stream_pwd )
clen = re_search.group( 1 )
if AttributeError:
return float( clen )
except AttributeError:
return np.nan
def find_streams( top_dir ):
# create df for streams
stream_df = pd.DataFrame()
# search for all files that end with .stream
for path, dirs, files in os.walk( top_dir ):
for name in files:
if name.endswith( ".stream" ):
# get stream pwd
stream_pwd = os.path.join( path, name )
# scrub clen from stream
clen = scrub_clen( stream_pwd )
# put clen and stream pwd into df
data = [ { "stream_pwd" : stream_pwd,
"clen" : clen
} ]
stream_df_1 = pd.DataFrame( data )
stream_df = pd.concat( ( stream_df, stream_df_1 ) )
# sort df based on clen
stream_df = stream_df.sort_values( by="clen" )
# reset df index
stream_df = stream_df.reset_index( drop=True )
# return df of streams and clens
return stream_df
def scrub_us( stream ):
# get uc values from stream file
# example - Cell parameters 7.71784 7.78870 3.75250 nm, 90.19135 90.77553 90.19243 deg
# scrub clen and return - else nan
try:
pattern = r"Cell\sparameters\s(\d\.\d+)\s(\d\.\d+)\s(\d\.\d+)\snm,\s(\d+\.\d+)\s(\d+\.\d+)\s(\d+\.\d+)\sdeg"
cells = re.findall( pattern, stream )
if AttributeError:
return cells
except AttributeError:
return np.nan
def main( top_dir ):
# find stream files from process directory
print( "finding stream files" )
stream_df = find_streams( top_dir )
print( "done" )
# making results df for unit cell and index no.
results_df = pd.DataFrame()
# loop through stream files and collect unit_cell information
print( "looping through stream files to collect unit cell, indexed information" )
for index, row in stream_df.iterrows():
stream_pwd, clen = row[ "stream_pwd" ], row[ "clen" ]
# open stream file
print( "scrubbing stream for clen={0}".format( clen ) )
stream = open( stream_pwd, "r" ).read()
# scrub unit cell information
cells = scrub_us( stream )
# put cells in df
cols = [ "a", "b", "c", "alpha", "beta", "gamma" ]
cells_df = pd.DataFrame( cells, columns=cols )
cells_df = cells_df.astype( float )
# calc stats
indexed = len( cells_df )
std_a = cells_df.a.std()
std_b = cells_df.b.std()
std_c = cells_df.c.std()
# put stats in results df
stats = [ { "clen" : clen,
"indexed" : indexed,
"std_a" : std_a,
"std_b" : std_b,
"std_c" : std_c
} ]
results_df_1 = pd.DataFrame( stats )
results_df = pd.concat( ( results_df, results_df_1 ) )
print( "done" )
# reset index
results_df = results_df.reset_index( drop=True )
# plot results
fig, ax1 = plt.subplots()
# indexed images plot
color = "tab:red"
ax1.set_xlabel( "clen" )
ax1.set_ylabel( "indexed", color=color )
ax1.plot( results_df.clen, results_df.indexed, color=color)
ax1.tick_params( axis="y", labelcolor=color)
# instantiate a second axes that shares the same x-axis
ax2 = ax1.twinx()
# std_a plot
color = "tab:blue"
ax2.set_ylabel( "st.deviation", color=color )
ax2.plot( results_df.clen, results_df.std_a, color=color )
ax2.tick_params(axis='y', labelcolor=color)
# std_b plot
ax2.plot( results_df.clen, results_df.std_b, color=color )
ax2.tick_params(axis='y', labelcolor=color)
# std_b plot
ax2.plot( results_df.clen, results_df.std_c, color=color )
ax2.tick_params(axis='y', labelcolor=color)
fig.tight_layout() # otherwise the right y-label is slightly clipped
plt.show()
# variables
top_dir = "/sf/cristallina/data/p20590/work/process/jhb/detector_refinement/coarse_scan"
main( top_dir )