cheeky script that spits out a bunch of info about a stream file
This commit is contained in:
134
reduction_tools/stream_stats.py
Normal file
134
reduction_tools/stream_stats.py
Normal file
@@ -0,0 +1,134 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# author J.Beale
|
||||
|
||||
"""
|
||||
# aim
|
||||
a quick a dirty script to see how your indexing went
|
||||
will spit out useful parameters like the number images, indexing rate etc
|
||||
|
||||
# usage
|
||||
python stream_stats <path to stream file>
|
||||
|
||||
# output
|
||||
text in line - no files
|
||||
chunks, crystals, indexing rate, mean res, obs, unit cell parameters
|
||||
"""
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import regex as re
|
||||
import sys
|
||||
|
||||
def count_chunks( stream ):
|
||||
|
||||
# get number of chunks
|
||||
# example - ----- Begin chunk -----
|
||||
# count them
|
||||
try:
|
||||
pattern = r"-----\sBegin\schunk\s-----"
|
||||
chunks = re.findall( pattern, stream )
|
||||
if AttributeError:
|
||||
return len( chunks )
|
||||
except AttributeError:
|
||||
return np.nan
|
||||
|
||||
def scrub_cells( stream ):
|
||||
|
||||
# get uc values from stream file
|
||||
# example - Cell parameters 7.71784 7.78870 3.75250 nm, 90.19135 90.77553 90.19243 deg
|
||||
# scrub clen and return - else nan
|
||||
try:
|
||||
pattern = r"Cell\sparameters\s(\d\.\d+)\s(\d\.\d+)\s(\d\.\d+)\snm,\s(\d+\.\d+)\s(\d+\.\d+)\s(\d+\.\d+)\sdeg"
|
||||
cell_lst = re.findall( pattern, stream )
|
||||
xtals = len( cell_lst )
|
||||
if AttributeError:
|
||||
return cell_lst, xtals
|
||||
except AttributeError:
|
||||
return np.nan
|
||||
|
||||
def scrub_res( stream ):
|
||||
|
||||
# get diffraction limit
|
||||
# example - diffraction_resolution_limit = 4.07 nm^-1 or 2.46 A
|
||||
# scrub res_lst or return np.nan
|
||||
try:
|
||||
pattern = r"diffraction_resolution_limit\s=\s\d\.\d+\snm\^-1\sor\s(\d\.\d+)\sA"
|
||||
res_lst = re.findall( pattern, stream )
|
||||
if AttributeError:
|
||||
return res_lst
|
||||
except AttributeError:
|
||||
return np.nan
|
||||
|
||||
def scrub_obs( stream ):
|
||||
|
||||
# get number of reflections
|
||||
# example - num_reflections = 308
|
||||
# scrub reflections or return np.nan
|
||||
try:
|
||||
pattern = r"num_reflections\s=\s(\d+)"
|
||||
obs_lst = re.findall( pattern, stream )
|
||||
if AttributeError:
|
||||
return obs_lst
|
||||
except AttributeError:
|
||||
return np.nan
|
||||
|
||||
def main( stream_pwd ):
|
||||
|
||||
print( "reading stream file" )
|
||||
# open stream file
|
||||
stream = open( stream_pwd, "r" ).read()
|
||||
print( "done" )
|
||||
|
||||
print( "scrubing data" )
|
||||
# get total number chunks
|
||||
chunks = count_chunks( stream )
|
||||
|
||||
# get list of cells
|
||||
cell_lst, xtals = scrub_cells( stream )
|
||||
|
||||
# get list of cells
|
||||
res_lst = scrub_res( stream )
|
||||
|
||||
# get list of cells
|
||||
obs_lst = scrub_obs( stream )
|
||||
print( "done" )
|
||||
|
||||
# res_df
|
||||
cols = [ "a", "b", "c", "alpha", "beta", "gamma" ]
|
||||
df = pd.DataFrame( cell_lst, columns=cols )
|
||||
df[ "resolution" ] = res_lst
|
||||
df[ "obs" ] = obs_lst
|
||||
|
||||
# convert all to floats
|
||||
df = df.astype(float)
|
||||
|
||||
print( "calculating stream stats" )
|
||||
# stats
|
||||
index_rate = round( xtals/chunks*100, 2 )
|
||||
mean_res, std_res = round( df.resolution.mean(), 2 ), round( df.resolution.std(), 2 )
|
||||
median_res = df.resolution.median()
|
||||
mean_obs, std_obs = round( df.obs.mean(), 2 ), round( df.obs.std(), 2)
|
||||
mean_a, std_a = round( df.a.mean()*10, 2 ), round( df.a.std()*10, 2 )
|
||||
mean_b, std_b = round( df.b.mean()*10, 2 ), round( df.b.std()*10, 2 )
|
||||
mean_c, std_c = round( df.c.mean()*10, 2 ), round( df.c.std()*10, 2 )
|
||||
mean_alpha, std_alpha = round( df.alpha.mean(), 2 ), round( df.alpha.std(), 2 )
|
||||
mean_beta, std_beta = round(df.beta.mean(), 2 ), round( df.beta.std(), 2 )
|
||||
mean_gamma, std_gamma = round( df.gamma.mean(), 2 ), round( df.gamma.std(), 2 )
|
||||
|
||||
# results
|
||||
print( "image = {0}".format( chunks ) )
|
||||
print( "crystals = {0}".format( xtals ) )
|
||||
print( "indexing rate = {0} %".format( index_rate ) )
|
||||
print( "mean resolution = {0} +/- {1} A".format( mean_res, std_res ) )
|
||||
print( "median resolution = {0} A".format( median_res ) )
|
||||
print( "mean observations = {0} +/- {1}".format( mean_obs, std_obs ) )
|
||||
print( "mean a = {0} +/- {1} A".format( mean_a, std_a ) )
|
||||
print( "mean b = {0} +/- {1} A".format( mean_b, std_b ) )
|
||||
print( "mean c = {0} +/- {1} A".format( mean_c, std_c ) )
|
||||
print( "mean alpha = {0} +/- {1} A".format( mean_alpha, std_alpha ) )
|
||||
print( "mean beta = {0} +/- {1} A".format( mean_beta, std_beta ) )
|
||||
print( "mean gamma = {0} +/- {1} A".format( mean_gamma, std_gamma ) )
|
||||
|
||||
if __name__ == "__main__":
|
||||
stream_pwd = sys.argv[1]
|
||||
main( stream_pwd )
|
||||
Reference in New Issue
Block a user