now has stream_stats output and log file - loguru still needs work

This commit is contained in:
Beale John Henry
2023-09-27 06:48:54 +02:00
parent 7eede81cec
commit 4b33332bf9

View File

@@ -18,6 +18,7 @@ python crystfel_split.py -l <path-to-list-file>
# output
a series of stream files from crystfel in the current working directory
a log file with relavent info on the run
"""
# modules
@@ -28,6 +29,93 @@ import time
import argparse
from tqdm import tqdm
import regex as re
import numpy as np
from loguru import logger
def count_chunks( stream ):
# get number of chunks
# example - ----- Begin chunk -----
# count them
try:
pattern = r"-----\sBegin\schunk\s-----"
chunks = re.findall( pattern, stream )
if AttributeError:
return len( chunks )
except AttributeError:
logger.debug( "count_chunks error" )
return np.nan
def scrub_cells( stream ):
# get uc values from stream file
# example - Cell parameters 7.71784 7.78870 3.75250 nm, 90.19135 90.77553 90.19243 deg
# scrub clen and return - else nan
try:
pattern = r"Cell\sparameters\s(\d\.\d+)\s(\d\.\d+)\s(\d\.\d+)\snm,\s(\d+\.\d+)\s(\d+\.\d+)\s(\d+\.\d+)\sdeg"
cell_lst = re.findall( pattern, stream )
xtals = len( cell_lst )
if AttributeError:
return cell_lst, xtals
except AttributeError:
logger.debug( "scrub_cells error" )
return np.nan
def scrub_res( stream ):
# get diffraction limit
# example - diffraction_resolution_limit = 4.07 nm^-1 or 2.46 A
# scrub res_lst or return np.nan
try:
pattern = r"diffraction_resolution_limit\s=\s\d\.\d+\snm\^-1\sor\s(\d\.\d+)\sA"
res_lst = re.findall( pattern, stream )
if AttributeError:
return res_lst
except AttributeError:
logger.debug( "scrub_res error" )
return np.nan
def scrub_obs( stream ):
# get number of reflections
# example - num_reflections = 308
# scrub reflections or return np.nan
try:
pattern = r"num_reflections\s=\s(\d+)"
obs_lst = re.findall( pattern, stream )
if AttributeError:
return obs_lst
except AttributeError:
logger.debug( "scrub_obs error" )
return np.nan
def calculate_stats( stream_pwd ):
# open stream file
stream = open( stream_pwd, "r" ).read()
# get total number chunks
chunks = count_chunks( stream )
# get list of cells
cell_lst, xtals = scrub_cells( stream )
# get list of cells
res_lst = scrub_res( stream )
# get list of cells
obs_lst = scrub_obs( stream )
# res_df
cols = [ "a", "b", "c", "alpha", "beta", "gamma" ]
df = pd.DataFrame( cell_lst, columns=cols )
df[ "resolution" ] = res_lst
df[ "obs" ] = obs_lst
# convert all to floats
df = df.astype(float)
return df, xtals, chunks
def h5_split( lst, chunk_size ):
@@ -97,6 +185,7 @@ def make_process_dir( proc_dir ):
os.makedirs( proc_dir )
except OSError as e:
if e.errno != errno.EEXIST:
logger.debug( "making directory error" )
raise
def submit_job( job_file ):
@@ -123,14 +212,9 @@ def wait_for_jobs( job_ids, total_jobs ):
completed_jobs.add(job_id)
pbar.update(1)
job_ids.difference_update(completed_jobs)
time.sleep(30)
time.sleep(5)
def run_splits( cwd, name, lst, chunk_size, geom_file, cell_file ):
print( "reading SwissFEL lst file" )
print( "creating {0} image chunks of lst".format( chunk_size ) )
list_df = h5_split( lst, chunk_size )
print( "DONE" )
def run_splits( list_df, cwd, name, lst, chunk_size, geom_file, cell_file ):
# set chunk counter
chunk = 0
@@ -141,10 +225,9 @@ def run_splits( cwd, name, lst, chunk_size, geom_file, cell_file ):
# stream file list
stream_lst = []
print( "creating crystfel jobs for individual chunks" )
for chunk_lst in list_df:
print( "chunk {0} = {1} images".format( chunk, len( chunk_lst ) ) )
logger.info( "chunk {0} = {1} images".format( chunk, len( chunk_lst ) ) )
# define process directory
proc_dir = "{0}/{1}/{1}_{2}".format( cwd, name, chunk )
@@ -164,7 +247,7 @@ def run_splits( cwd, name, lst, chunk_size, geom_file, cell_file ):
# submit jobs
job_id = submit_job( cryst_run_file )
print(f"Job submitted: { job_id }")
logger.info( f"Job submitted: { job_id }" )
submitted_job_ids.add( job_id )
# increase chunk counter
@@ -173,11 +256,20 @@ def run_splits( cwd, name, lst, chunk_size, geom_file, cell_file ):
# move back to top dir
os.chdir( cwd )
return submitted_job_ids, chunk, stream_lst
def main( cwd, name, lst, chunk_size, geom_file, cell_file ):
print( "reading SwissFEL lst file" )
print( "creating {0} image chunks of lst".format( chunk_size ) )
list_df = h5_split( lst, chunk_size )
print( "DONE" )
# include progress bar if required
# run crystfel runs on individual splits
submitted_job_ids, chunk, stream_lst = run_splits( list_df, cwd, name, lst, chunk_size, geom_file, cell_file )
# monitor progress of jobs
wait_for_jobs(submitted_job_ids, chunk)
print("slurm processing done")
# make composite .stream file
output_file = "{0}.stream".format( name )
@@ -190,14 +282,38 @@ def run_splits( cwd, name, lst, chunk_size, geom_file, cell_file ):
with open(file_name, "r") as input_file:
# Read the contents of the input file and append to the output file
output.write(input_file.read())
print(f"Appended contents from {file_name} to {output_file}")
logger.info( f"Appended contents from {file_name} to {output_file}")
except FileNotFoundError:
print(f"File {file_name} not found. Skipping.")
logger.debug(f"File {file_name} not found. Skipping.")
except IOError as e:
print(f"An error occurred while appending files: {e}")
logger.debug(f"An error occurred while appending files: {e}")
print( "DONE" )
df, xtals, chunks = calculate_stats( output_file )
# stats
index_rate = round( xtals/chunks*100, 2 )
mean_res, std_res = round( df.resolution.mean(), 2 ), round( df.resolution.std(), 2 )
median_res = df.resolution.median()
mean_obs, std_obs = round( df.obs.mean(), 2 ), round( df.obs.std(), 2)
mean_a, std_a = round( df.a.mean()*10, 2 ), round( df.a.std()*10, 2 )
mean_b, std_b = round( df.b.mean()*10, 2 ), round( df.b.std()*10, 2 )
mean_c, std_c = round( df.c.mean()*10, 2 ), round( df.c.std()*10, 2 )
mean_alpha, std_alpha = round( df.alpha.mean(), 2 ), round( df.alpha.std(), 2 )
mean_beta, std_beta = round(df.beta.mean(), 2 ), round( df.beta.std(), 2 )
mean_gamma, std_gamma = round( df.gamma.mean(), 2 ), round( df.gamma.std(), 2 )
logger.info( "image = {0}".format( chunks ) )
logger.info( "crystals = {0}".format( xtals ) )
logger.info( "indexing rate = {0} %".format( index_rate ) )
logger.info( "mean resolution = {0} +/- {1} A".format( mean_res, std_res ) )
logger.info( "median resolution = {0} A".format( median_res ) )
logger.info( "mean observations = {0} +/- {1}".format( mean_obs, std_obs ) )
logger.info( "mean a = {0} +/- {1} A".format( mean_a, std_a ) )
logger.info( "mean b = {0} +/- {1} A".format( mean_b, std_b ) )
logger.info( "mean c = {0} +/- {1} A".format( mean_c, std_c ) )
logger.info( "mean alpha = {0} +/- {1} A".format( mean_alpha, std_alpha ) )
logger.info( "mean beta = {0} +/- {1} A".format( mean_beta, std_beta ) )
logger.info( "mean gamma = {0} +/- {1} A".format( mean_gamma, std_gamma ) )
if __name__ == "__main__":
parser = argparse.ArgumentParser()
@@ -212,7 +328,7 @@ if __name__ == "__main__":
"--chunk_size",
help="how big should each chunk be? - the bigger the chunk, the fewer jobs, the slower it will be",
type=int,
default=2500
default=500
)
parser.add_argument(
"-g",
@@ -234,6 +350,13 @@ if __name__ == "__main__":
default="split"
)
args = parser.parse_args()
# run geom converter
# set current working directory
cwd = os.getcwd()
run_splits( cwd, args.job_name, args.lst_file, args.chunk_size, args.geom_file, args.cell_file )
# set loguru
logfile = "{0}.log".format( args.job_name )
logger.add( logfile, level="DEBUG" )
# log geometry file
geom = open( args.geom_file, "r" ).read()
logger.info( geom )
main( cwd, args.job_name, args.lst_file, args.chunk_size, args.geom_file, args.cell_file )