func. not check - added wilson to plot + tanh curve fits + relabelled axis
This commit is contained in:
@@ -16,12 +16,14 @@ python partialator.py -s <path-to-stream-file>
|
||||
-b number of resolution bins - must be > 20
|
||||
-r high-res limt. Needs a default. Default set to 1.3
|
||||
-a max-adu. Default = 12000
|
||||
-R ra reservation name if available
|
||||
|
||||
# output
|
||||
- scaled/merged files
|
||||
- an mtz file
|
||||
- useful plots
|
||||
- useful summerized .dat files
|
||||
- log file of output
|
||||
"""
|
||||
|
||||
# modules
|
||||
@@ -43,12 +45,15 @@ def submit_job( job_file, reservation ):
|
||||
# submit the job
|
||||
if reservation:
|
||||
print( "using a ra beamtime reservation = {0}".format( reservation ) )
|
||||
logger.info( "using ra reservation to process data = {0}".format( reservation ) )
|
||||
submit_cmd = [ "sbatch", "--reservation={0}".format( reservation ), "--cpus-per-task=32", "--" , job_file ]
|
||||
else:
|
||||
submit_cmd = [ "sbatch", "--cpus-per-task=32", "--" , job_file ]
|
||||
|
||||
logger.info( "using slurm command = {0}".format( submit_cmd ) )
|
||||
|
||||
try:
|
||||
job_output = subprocess.check_output( submit_cmd )
|
||||
logger.info( "submited job = {0}".format( job_output ) )
|
||||
except subprocess.CalledProcessError as e:
|
||||
print( "please give the correct ra reservation or remove the -R from the arguements" )
|
||||
exit()
|
||||
@@ -61,17 +66,17 @@ def submit_job( job_file, reservation ):
|
||||
|
||||
def wait_for_jobs( job_ids, total_jobs ):
|
||||
|
||||
with tqdm(total=total_jobs, desc="Jobs Completed", unit="job") as pbar:
|
||||
with tqdm( total=total_jobs, desc="Jobs Completed", unit="job" ) as pbar:
|
||||
while job_ids:
|
||||
completed_jobs = set()
|
||||
for job_id in job_ids:
|
||||
status_cmd = [ "squeue", "-h", "-j", str(job_id) ]
|
||||
status = subprocess.check_output(status_cmd)
|
||||
status_cmd = [ "squeue", "-h", "-j", str( job_id ) ]
|
||||
status = subprocess.check_output( status_cmd )
|
||||
if not status:
|
||||
completed_jobs.add(job_id)
|
||||
pbar.update(1)
|
||||
job_ids.difference_update(completed_jobs)
|
||||
time.sleep(2)
|
||||
completed_jobs.add( job_id )
|
||||
pbar.update( 1 )
|
||||
job_ids.difference_update( completed_jobs )
|
||||
time.sleep( 2 )
|
||||
|
||||
def run_partialator( proc_dir, name, stream, pointgroup, model, iterations, cell, shells, part_h_res, adu ):
|
||||
|
||||
@@ -102,6 +107,11 @@ def run_partialator( proc_dir, name, stream, pointgroup, model, iterations, cell
|
||||
# make file executable
|
||||
subprocess.call( [ "chmod", "+x", "{0}".format( part_run_file ) ] )
|
||||
|
||||
# add partialator script to log
|
||||
part_input = open( part_run_file, "r" )
|
||||
logger.info( "partialator input file =\n{0}".format( part_input.read() ) )
|
||||
part_input.close()
|
||||
|
||||
# return partialator file name
|
||||
return part_run_file
|
||||
|
||||
@@ -113,7 +123,7 @@ def make_process_dir( dir ):
|
||||
if e.errno != errno.EEXIST:
|
||||
raise
|
||||
|
||||
def summary_stats( cc_dat, ccstar_dat, mult_dat, rsplit_dat ):
|
||||
def summary_stats( cc_dat, ccstar_dat, mult_dat, rsplit_dat, wilson_dat ):
|
||||
|
||||
# read all files into pd
|
||||
# function to sort out different column names
|
||||
@@ -129,37 +139,33 @@ def summary_stats( cc_dat, ccstar_dat, mult_dat, rsplit_dat ):
|
||||
"mult", "snr", "I", "d", "min", "max" ]
|
||||
elif var == "rsplit":
|
||||
cols = [ "d(nm)", "rsplit", "nref", "d", "min", "max" ]
|
||||
elif var == "wilson":
|
||||
cols = [ "bin", "s2", "d", "lnI", "nref" ]
|
||||
|
||||
df = pd.read_csv( dat, names=cols, skiprows=1, sep="\s+" )
|
||||
|
||||
print(df)
|
||||
return df
|
||||
|
||||
|
||||
# make df
|
||||
cc_df = read_dat( cc_dat, "cc" )
|
||||
ccstar_df = read_dat( ccstar_dat, "ccstar" )
|
||||
mult_df = read_dat( mult_dat, "mult" )
|
||||
rsplit_df = read_dat( rsplit_dat, "rsplit" )
|
||||
wilson_df = read_dat( wilson_dat, "wilson" )
|
||||
|
||||
# remove unwanted cols
|
||||
cc_df = cc_df[ [ "cc" ] ]
|
||||
ccstar_df = ccstar_df[ [ "ccstar" ] ]
|
||||
rsplit_df = rsplit_df[ [ "rsplit" ] ]
|
||||
wilson_df = wilson_df[ [ "lnI" ] ]
|
||||
|
||||
# merge dfs
|
||||
stats_df = pd.concat( [ mult_df, cc_df, ccstar_df, rsplit_df ], axis=1, join="inner" )
|
||||
stats_df = pd.concat( [ mult_df, cc_df, ccstar_df, rsplit_df, wilson_df ], axis=1, join="inner" )
|
||||
|
||||
# make 1/d, 1/d^2 column
|
||||
stats_df[ "1_d" ] = 1 / stats_df.d
|
||||
stats_df[ "1_d2" ] = 1 / stats_df.d**2
|
||||
|
||||
# reorder cols
|
||||
stats_df = stats_df[ [ "1_d", "1_d2", "d", "min",
|
||||
"max", "nref", "poss",
|
||||
"comp", "obs", "mult",
|
||||
"snr", "I", "cc", "ccstar", "rsplit" ] ]
|
||||
|
||||
# change nan to 0
|
||||
stats_df = stats_df.fillna(0)
|
||||
|
||||
@@ -170,7 +176,7 @@ def get_metric( d2_series, cc_series, cut_off ):
|
||||
# Define the tanh function from scitbx
|
||||
def tanh(x, r, s0):
|
||||
z = (x - s0)/r
|
||||
return 0.5 * (1 - np.tanh(z))
|
||||
return 0.5 * ( 1 - np.tanh(z) )
|
||||
|
||||
def arctanh( y, r, s0 ):
|
||||
return r * np.arctanh( 1 - 2*y ) + s0
|
||||
@@ -183,13 +189,15 @@ def get_metric( d2_series, cc_series, cut_off ):
|
||||
|
||||
# calculate cut-off point
|
||||
cc_stat = arctanh( cut_off, r, s0 )
|
||||
|
||||
# covert back from 1/d2 to d
|
||||
cc_stat = np.sqrt( ( 1 / cc_stat ) )
|
||||
|
||||
return cc_stat
|
||||
# get curve for plotting
|
||||
cc_tanh = tanh( d2_series, r, s0 )
|
||||
|
||||
def summary_fig( stats_df ):
|
||||
return cc_stat, cc_tanh
|
||||
|
||||
def summary_fig( stats_df, cc_tanh, ccstar_tanh ):
|
||||
|
||||
# plot results
|
||||
cc_fig, axs = plt.subplots(2, 2)
|
||||
@@ -198,39 +206,47 @@ def summary_fig( stats_df ):
|
||||
# cc plot
|
||||
color = "tab:red"
|
||||
axs[0,0].set_xlabel( "1/d (1/A)" )
|
||||
axs[0,0].set_ylabel("CC" )
|
||||
axs[0,0].set_ylabel( "CC" )
|
||||
axs[0,0].set_ylim( 0, 1 )
|
||||
axs[0,0].axhline(y = 0.3, color="black", linestyle = "dashed")
|
||||
axs[0,0].plot(stats_df[ "1_d" ], stats_df.cc, color=color)
|
||||
axs[0,0].tick_params(axis="y", labelcolor=color)
|
||||
axs[0,0].axhline( y = 0.3, color="black", linestyle = "dashed" )
|
||||
# plot cc
|
||||
axs[0,0].plot( stats_df[ "1_d" ], stats_df.cc, color=color )
|
||||
# plot fit
|
||||
axs[0,0].plot( stats_df[ "1_d2" ], cc_tanh, color="tab:grey", linestyle = "dashed" )
|
||||
axs[0,0].xticks( stats_df[ "1_d2" ].iloc[::5, :], stats_df[ "d" ].iloc[::5, :] )
|
||||
axs[0,0].tick_params( axis="y", labelcolor=color )
|
||||
|
||||
# cc* plot
|
||||
color = "tab:blue"
|
||||
axs[0,1].set_xlabel( "1/d (1/A)" )
|
||||
axs[0,1].set_ylabel("CC*", color=color)
|
||||
axs[0,1].set_ylabel( "CC*", color=color )
|
||||
axs[0,1].set_ylim( 0, 1 )
|
||||
axs[0,1].axhline(y = 0.7, color="black", linestyle = "dashed")
|
||||
axs[0,1].plot(stats_df[ "1_d" ], stats_df.ccstar, color=color)
|
||||
axs[0,1].tick_params(axis='y', labelcolor=color)
|
||||
axs[0,1].axhline( y = 0.7, color="black", linestyle = "dashed" )
|
||||
axs[0,1].plot( stats_df[ "1_d" ], stats_df.ccstar, color=color )
|
||||
# plot fit
|
||||
axs[0,0].plot( stats_df[ "1_d2" ], ccstar_tanh, color="tab:grey", linestyle = "dashed" )
|
||||
axs[0,0].xticks( stats_df[ "1_d2" ].iloc[::5, :], stats_df[ "d" ].iloc[::5, :] )
|
||||
axs[0,1].tick_params( axis='y', labelcolor=color )
|
||||
|
||||
# rsplit plot
|
||||
color = "tab:green"
|
||||
axs[1,0].set_xlabel( "1/d (1/A)" )
|
||||
axs[1,0].set_ylabel("Rsplit", color=color)
|
||||
axs[1,0].plot(stats_df[ "1_d" ], stats_df.rsplit, color=color)
|
||||
axs[1,0].tick_params(axis='y', labelcolor=color)
|
||||
axs[1,0].set_ylabel( "Rsplit", color=color )
|
||||
axs[1,0].plot( stats_df[ "1_d" ], stats_df.rsplit, color=color )
|
||||
axs[1,0].tick_params( axis='y', labelcolor=color )
|
||||
|
||||
|
||||
# rsplit plot
|
||||
# wilson plot
|
||||
color = "tab:purple"
|
||||
axs[1,1].set_xlabel( "1/d (1/A)" )
|
||||
axs[1,1].set_ylabel("Multiplicity", color=color)
|
||||
axs[1,1].plot(stats_df[ "1_d" ], stats_df.mult, color=color)
|
||||
axs[1,1].tick_params(axis='y', labelcolor=color)
|
||||
axs[1,1].set_xlabel( "d (A)" )
|
||||
axs[1,1].set_ylabel( "lnI", color=color )
|
||||
axs[1,1].plot( stats_df[ "1_d2" ], stats_df.lnI, color=color )
|
||||
# axs[1,1].invert_xaxis()
|
||||
axs[1,1].tick_params( axis='y', labelcolor=color )
|
||||
|
||||
# save figure
|
||||
plt.tight_layout()
|
||||
plt.savefig("plots.png")
|
||||
plt.savefig( "plots.png" )
|
||||
|
||||
def get_mean_cell( stream ):
|
||||
|
||||
@@ -287,23 +303,26 @@ def main( cwd, name, stream, pointgroup, model, iterations, cell, shells, part_h
|
||||
ccstar_dat = "ccstar.dat"
|
||||
mult_dat = "mult.dat"
|
||||
rsplit_dat = "Rsplit.dat"
|
||||
wilson_dat = "wilson.dat"
|
||||
|
||||
# make summary data table
|
||||
stats_df = summary_stats( cc_dat, ccstar_dat, mult_dat, rsplit_dat )
|
||||
stats_df = summary_stats( cc_dat, ccstar_dat, mult_dat, rsplit_dat, wilson_dat )
|
||||
logger.info( "stats table from .dat file =\n{0}".format( stats_df ) )
|
||||
print_df = stats_df[ [ "1_d", "d", "min",
|
||||
"max", "nref", "poss",
|
||||
"comp", "obs", "mult",
|
||||
"snr", "I", "rsplit", "cc", "ccstar"] ]
|
||||
"snr", "I", "rsplit", "cc", "ccstar" ] ]
|
||||
print_df.to_csv( "summary_table.csv", sep="\t", index=False )
|
||||
|
||||
|
||||
# calculate cc metrics
|
||||
cc_cut = get_metric( stats_df[ "1_d2" ], stats_df.cc, 0.3 )
|
||||
ccstar_cut = get_metric( stats_df[ "1_d2" ], stats_df.ccstar, 0.7 )
|
||||
cc_cut, cc_tanh = get_metric( stats_df[ "1_d2" ], stats_df.cc, 0.3 )
|
||||
ccstar_cut, ccstar_tanh = get_metric( stats_df[ "1_d2" ], stats_df.ccstar, 0.7 )
|
||||
print( "resolution at CC0.5 at 0.3 = {0}".format( cc_cut ) )
|
||||
print( "resolution at CC* at 0.7 = {0}".format( ccstar_cut ) )
|
||||
|
||||
# show plots
|
||||
summary_fig( stats_df )
|
||||
summary_fig( stats_df, cc_tanh, ccstar_tanh )
|
||||
|
||||
# move back to top dir
|
||||
os.chdir( cwd )
|
||||
|
||||
Reference in New Issue
Block a user