diff --git a/geometry.py b/geometry.py index f7bdd66..4186f34 100755 --- a/geometry.py +++ b/geometry.py @@ -63,8 +63,8 @@ class geometry: numPoints=len(next(iter(meas.values()))) numZoom=len(meas) - M=np.ndarray((numPoints, numZoom, 2), np.float) - K=np.array(tuple(meas.keys()), np.float) + M=np.ndarray((numPoints, numZoom, 2), np.float64) + K=np.array(tuple(meas.keys()), np.float64) for i, (k, v) in enumerate(meas.items()): M[:, i, :]=np.array(v) @@ -91,7 +91,7 @@ class geometry: # [.. .. ..] [..] # [0 1 -bn] [pny] # A * aa = y - A=np.ndarray((numPoints*2, 3), np.float) + A=np.ndarray((numPoints*2, 3), np.float64) A[:numPoints,:2]=(1,0) A[numPoints:,:2]=(0,1) A[:,2]=-AB.T.ravel() @@ -102,7 +102,7 @@ class geometry: if debug: # plot least square line fitting ax.autoscale(False) - P=np.ndarray((2, 2), np.float) + P=np.ndarray((2, 2), np.float64) for i in range(numPoints): q=aa[2] @@ -125,9 +125,9 @@ class geometry: # # A * aa = y # # calculate least square line fitting for each point -# A=np.asmatrix(np.ndarray((numZoom, 2), np.float)) +# A=np.asmatrix(np.ndarray((numZoom, 2), np.float64)) # A[:, 1]=1 -# AA=np.ndarray((numPoints, 2), np.float) # fitting results a1..an b1..bn +# AA=np.ndarray((numPoints, 2), np.float64) # fitting results a1..an b1..bn # for i in range(numPoints): # A[:, 0]=M[i, :, 0].reshape(-1, 1) # y=np.asmatrix(M[i, :, 1]).T @@ -139,7 +139,7 @@ class geometry: # ax.autoscale(False) # rngx=(M[:, :, 0].min(), M[:, :, 0].max()) # Y=np.stack((AA[:, 0]*rngx[0]+AA[:, 1], AA[:, 0]*rngx[1]+AA[:, 1])) -# P=np.ndarray((2, 2), np.float) +# P=np.ndarray((2, 2), np.float64) # P[:, 0]=rngx # for i in range(numPoints): @@ -153,9 +153,9 @@ class geometry: # # [a1 -1] * [x] [-b1] # # [a2 -1] * [y] = [-b2] -# P=np.ndarray(((numPoints-1)*numPoints//2, 2), np.float) +# P=np.ndarray(((numPoints-1)*numPoints//2, 2), np.float64) # k=0 -# D=np.ndarray((2, 2), np.float) +# D=np.ndarray((2, 2), np.float64) # D[:, 1]=-1 # # for i in range(numPoints): # # for j in range(i+1,numPoints): @@ -225,8 +225,8 @@ class geometry: if len(meas)<2: _log.error('need at least 2 zoom levels:\nmeas:{}'.format(meas)) return - AA=np.ndarray((len(meas), 2, 2), np.float) - K=np.array(tuple(meas.keys()), np.float) + AA=np.ndarray((len(meas), 2, 2), np.float64) + K=np.array(tuple(meas.keys()), np.float64) for i, (k, v) in enumerate(meas.items()): m=np.array(v) # measurements if m.shape[0]<3: @@ -234,7 +234,7 @@ class geometry: return d=m[1:]-m[0] # distances - A=np.zeros((d.shape[0]*2, d.shape[1]), np.float) + A=np.zeros((d.shape[0]*2, d.shape[1]), np.float64) A[:d.shape[0], :2]=A[d.shape[0]:, 2:]=d[:, 2:] y=d[:, :2].T.ravel() @@ -341,7 +341,7 @@ class geometry: # (1,0,1,0,0,0), # (0,0,0,1,0,1), # (1,1,1,0,0,0), - # (0,0,0,1,1,1)), np.float) + # (0,0,0,1,1,1)), np.float64) if fid is None: fid=np.array(((0,0),(0,1),(1,0),(1,1))) diff --git a/pyqtUsrObj.py b/pyqtUsrObj.py index 7b4ecce..952d6d8 100644 --- a/pyqtUsrObj.py +++ b/pyqtUsrObj.py @@ -287,7 +287,7 @@ class Grid(UsrROI): for i in range(1, cnt[0], 2): yy[i]=yy[i][::-1] - pts=np.array([xx.reshape(-1), yy.reshape(-1)], dtype=np.float).transpose()*pitch + pts=np.array([xx.reshape(-1), yy.reshape(-1)], dtype=np.float64).transpose()*pitch #pts+=pos return pts @@ -558,8 +558,8 @@ class FixTargetFrame(UsrROI): self._dscr['size'] #pos=np.array(self.pos()) cnt =np.array(grid['count'],np.int32) - #pos =np.array(grid['pos'],np.float) - #pitch=np.array(grid['pitch'],np.float) + #pos =np.array(grid['pos'],np.float64) + #pitch=np.array(grid['pitch'],np.float64) xx, yy=np.meshgrid(range(cnt[0]), range(cnt[1])) if scan&0x01: #modify x scaning forward backward each line for i in range(1,cnt[1],2): @@ -570,7 +570,7 @@ class FixTargetFrame(UsrROI): for i in range(1, cnt[0], 2): yy[i]=yy[i][::-1] - pts=np.array([xx.reshape(-1), yy.reshape(-1)], dtype=np.float).transpose() #*pitch + pts=np.array([xx.reshape(-1), yy.reshape(-1)], dtype=np.float64).transpose() #*pitch param={'grid':grid, 'points':pts, 'code_gen': self.code_gen} @@ -680,7 +680,7 @@ if __name__=='__main__': #string from inkscape path of the drawing d="m 524.7061,637.31536 3.54883,0 3.54882,0 3.54883,0 0,-4.20801 0,-4.20801 0,-4.208 0,-4.20801 4.22949,0 4.22949,0 4.2295,0 4.22949,0 0,-3.55957 0,-3.55957 0,-3.55957 0,-3.55957 -4.22949,0 -4.2295,0 -4.22949,0 -4.22949,0 0,-4.22949 0,-4.2295 0,-4.22949 0,-4.22949 -3.54883,0 -3.54882,0 -3.54883,0 -3.54883,0 0,4.22949 0,4.22949 0,4.2295 0,4.22949 -4.20752,0 -4.20752,0 -4.20752,0 -4.20752,0 0,3.55957 0,3.55957 0,3.55957 0,3.55957 4.20752,0 4.20752,0 4.20752,0 4.20752,0 0,4.20801 0,4.208 0,4.20801 0,4.20801 -11.87126,0.36152 -12.12171,-0.13934 -2.52941,3.93977 -2.57238,3.94369 -2.50854,3.88614 -2.50731,3.91767 -2.49035,3.88268 -2.50987,3.91244 -2.50453,3.88732 -2.51897,3.9189 -6.39782,5.72802 -6.63782,6.70894 -3.21517,5.11464 -3.3404,5.32333 -3.08995,5.11464 -3.17343,5.15637 -16.69223,0.0698 5.55908,0 5.55909,0 5.55908,0 3.18604,-5.17432 3.18603,-5.17431 3.18604,-5.17432 3.18603,-5.17431 3.17481,5.17431 3.1748,5.17432 3.17481,5.17431 3.1748,5.17432 5.59229,0 5.59228,0 5.59229,0 5.59228,0 -2.74121,-4.15283 -2.74121,-4.15283 -2.74121,-4.15283 -2.74121,-4.15284 -2.74122,-4.15283 -2.74121,-4.15283 -2.74121,-4.15283 -2.74121,-4.15283 2.50488,-3.90015 2.50489,-3.90015 2.50488,-3.90014 2.50488,-3.90015 2.50488,-3.90015 2.50489,-3.90015 2.50488,-3.90014 2.50488,-3.90015 -5.42724,0 -5.42725,0 -5.42724,0 -5.42725,0 -2.76855,4.95508 -2.76856,4.95508 -2.76855,4.95508 -2.76856,4.95508 -2.85644,-4.95508 -2.85645,-4.95508 -2.85644,-4.95508 -2.85645,-4.95508 -5.48193,0 -5.48194,0 -5.48194,0 -5.48193,0 2.52686,3.8562 2.52685,3.8562 2.52686,3.8562 2.52686,3.85621 2.52685,3.8562 2.52686,3.8562 2.52685,3.8562 2.52686,3.8562 -2.77954,4.19678 -2.77954,4.19678 -2.77954,4.19677 -2.77955,4.19678 -2.77954,4.19678 -2.77954,4.19678 -2.77954,4.19677 -2.77954,4.19678 -4.91638,0 -4.91638,0 -4.91639,0 -4.91638,0 -4.91638,0 -4.91638,0 -4.91638,0 -4.91638,0 -4.91639,0 -4.91638,0 -4.91638,0 -4.91638,0 -4.91638,0 -4.91639,0 -4.91638,0 -4.91638,0 4.07568,0 4.07568,0 4.07569,0 4.07568,0 0,-6.14136 0,-6.14135 0,-6.14136 0,-6.14136 0,-6.14136 0,-6.14135 0,-6.14136 0,-6.14136 1.57105,6.14136 1.57104,6.14136 1.57104,6.14135 1.57105,6.14136 1.57105,6.14136 1.57104,6.14136 1.57104,6.14135 1.57105,6.14136 3.68066,0 3.68067,0 3.68067,0 3.68066,0 1.57642,-6.14136 1.57641,-6.14135 1.57642,-6.14136 1.57641,-6.14136 1.57642,-6.14136 1.57642,-6.14135 1.57641,-6.14136 1.57642,-6.14136 0,6.14136 0,6.14136 0,6.14135 0,6.14136 0,6.14136 0,6.14136 0,6.14135 0,6.14136 4.06494,0 4.06494,0 4.06494,0 4.06494,0 0,-8.05298 0,-8.05298 0,-8.05298 0,-8.05297 0,-8.05298 0,-8.05298 0,-8.05298 0,-8.05298 -6.52588,0 -6.52588,0 -6.52587,0 -6.52588,0 -1.25781,4.8999 -1.25782,4.89991 -1.25781,4.8999 -1.25781,4.8999 -1.25781,4.8999 -1.25782,4.89991 -1.25781,4.8999 -1.25781,4.8999 -1.26343,-4.8999 -1.26343,-4.8999 -1.26343,-4.89991 -1.26343,-4.8999 -1.26342,-4.8999 -1.26343,-4.8999 -1.26343,-4.89991 -1.26343,-4.8999 -6.54785,0 -6.54785,0 -6.54785,0 -6.54785,0 0,8.05298 0,8.05298 0,8.05298 0,8.05298 0,8.05297 0,8.05298 0,8.05298 -4.25755,8.13646 -8.40743,0.19687 -8.40743,0.19687 -8.40743,0.19687 -8.40743,0.19687 5.93521,0.22812 8.09742,-0.56079 6.18579,-1.6814 4.55883,-2.66919 3.13062,-3.43823 1.84571,-3.87866 0.61523,-3.98853 -0.58179,-3.83373 -1.74634,-3.50416 -2.802,-2.95581 -3.83472,-2.18676 -5.49316,-1.60401 -7.77832,-1.20849 -7.64649,-1.58204 -1.75781,-2.59179 1.36328,-2.59375 4.4375,-1.09766 5.09766,1.40625 2.19727,3.29492 4.24072,-0.41748 4.24073,-0.41748 4.24072,-0.41748 4.24072,-0.41748 -1.98804,-4.09741 -2.44946,-3.15259 -2.97778,-2.3291 -3.65894,-1.62598 -5.05371,-0.95629 -7.25098,-0.3191 -7.10766,0.41748 -5.50367,1.25244 -4.19677,2.05494 -3.18604,2.91186 -2.01099,3.65796 -0.67065,4.29517 0.61523,3.98852 1.84571,3.5271 2.78002,2.823 3.32935,1.87817 5.06421,1.42822 7.89868,1.56006 7.69141,1.84571 2.02148,2.98828 -1.53906,2.85742 -5.58008,1.53711 -5.27344,-1.36133 -3.07617,-4.52734 -4.43847,0.41748 -4.43848,0.41748 -4.43848,0.41748 -4.43847,0.41748 2.50488,5.95459 4.43848,4.4165 3.18313,1.59592 4.10031,1.14017 -3.65979,0.0939 -5.9713,6e-5 -5.97131,5e-5 -5.9713,6e-5 -5.9713,6e-5 -5.9713,5e-5 -5.97131,6e-5 -5.9713,5e-5 -5.9713,6e-5 5.34491,0.81842 8.09742,-0.56079 6.18579,-1.6814 4.55883,-2.66919 3.13062,-3.43823 1.84571,-3.87866 0.61523,-3.98853 -0.58179,-3.83373 -1.74634,-3.50416 -2.802,-2.95581 -3.83472,-2.18676 -5.49316,-1.60401 -7.77832,-1.20849 -7.64649,-1.58204 -1.75781,-2.59179 1.36328,-2.59375 4.4375,-1.09766 5.09766,1.40625 2.19727,3.29492 4.24072,-0.41748 4.24073,-0.41748 4.24072,-0.41748 4.24072,-0.41748 -1.98804,-4.09741 -2.44946,-3.15259 -2.97778,-2.3291 -3.65894,-1.62598 -5.05371,-0.95629 -7.25098,-0.3191 -7.10766,0.41748 -5.50367,1.25244 -4.19677,2.05494 -3.18604,2.91186 -2.01099,3.65796 -0.67065,4.29517 0.61523,3.98852 1.84571,3.5271 2.78002,2.823 3.32935,1.87817 5.06421,1.42822 7.89868,1.56006 7.69141,1.84571 2.02148,2.98828 -1.53906,2.85742 -5.58008,1.53711 -5.27344,-1.36133 -3.07617,-4.52734 -4.43847,0.41748 -4.43848,0.41748 -4.43848,0.41748 -4.43847,0.41748 2.50488,5.95459 4.43848,4.4165 3.18313,1.59592 4.10031,1.14017 -3.06953,-0.0416 -3.06952,-0.0416 -8.58102,-0.0261 -10.12782,-0.0261 -7.03422,-0.0261 -8.58102,-0.0261 4.47168,0 6.6151,0 2.32826,0 4.47168,0 0,-5.83374 0,-5.83374 0,-5.83374 0,-5.83374 0,-5.83374 0,-5.83374 0,-5.83374 0,-5.83374 -4.47168,0 -4.47168,0 -4.47168,0 0,-5.5796 4.47168,0 4.47168,0 4.47168,0 0,-6.08691 0,-6.08692 -4.47168,0 -4.47168,0 -4.47168,0 -4.47168,0 0,6.08692 0,6.08691 0,5.5796 0,5.83374 0,5.83374 0,5.83374 0,5.83374 0,5.83374 0,5.83374 0,5.83374 -3.67318,5.83374 -8.7308,0 -10.73079,0 -6.7308,0 -9.10563,0 -2.25201,0.007 -8.72971,0.0266 -7.53755,-0.0442 -9.68477,0.0107 -6.3443,0 3.99902,0 3.99902,0 3.99903,0 3.99902,0 2.28516,-7.02002 2.28516,-7.02002 2.28516,-7.02002 2.28516,-7.02002 2.36181,7.02002 2.36182,7.02002 2.36181,7.02002 2.36182,7.02002 3.97705,0 3.97705,0 3.97705,0 3.97705,0 2.14795,-5.83374 2.14795,-5.83374 2.14795,-5.83374 2.14795,-5.83374 2.14795,-5.83374 2.14795,-5.83374 2.14795,-5.83374 2.14795,-5.83374 -4.2959,0 -4.2959,0 -4.2959,0 -4.2959,0 -0.93921,3.67505 -0.93921,3.67505 -0.93921,3.67505 -0.93921,3.67505 -0.9392,3.67504 -0.93921,3.67505 -0.93921,3.67505 -0.93921,3.67505 -1.23047,-3.67505 -1.23047,-3.67505 -1.23047,-3.67505 -1.23047,-3.67504 -1.23046,-3.67505 -1.23047,-3.67505 -1.23047,-3.67505 -1.23047,-3.67505 -4.03223,0 -4.03222,0 -4.03223,0 -4.03223,0 -1.18652,3.67505 -1.18653,3.67505 -1.18652,3.67505 -1.18653,3.67505 -1.18652,3.67504 -1.18652,3.67505 -1.18653,3.67505 -1.18652,3.67505 -0.93921,-3.67505 -0.93921,-3.67505 -0.93921,-3.67505 -0.93921,-3.67504 -0.9392,-3.67505 -0.93921,-3.67505 -0.93921,-3.67505 -0.93921,-3.67505 -4.32862,0 -4.32861,0 -4.32862,0 -4.32861,0 2.16431,5.83374 2.1643,5.83374 2.16431,5.83374 2.16431,5.83374 2.16431,5.83374 2.1643,5.83374 2.16431,5.83374 -3.84635,5.83374 -5.60781,0.003 -5.6078,0.003 -5.60781,0.003 -5.6078,0.003 -5.4839,-1.59358 0,0 5.47119,-3.35034 4.10888,-4.60278 2.5708,-5.4712 0.85694,-5.95459 -0.64868,-5.02123 -1.94507,-4.51587 -3.32837,-3.91114 -4.88843,-3.20801 -7.482173,-2.87842 -5.1337,-1.42273 -6.06186,-1.41174 -6.67969,-2.37304 -1.44922,-2.76758 1.75782,-3.56055 5.22851,-1.49414 6.5918,1.97852 1.99951,2.5708 1.16455,3.75732 4.69141,-0.2749 4.691403,-0.2749 4.6914,-0.27491 4.69141,-0.2749 -0.94483,-4.66918 -1.604,-3.98804 -2.26318,-3.30688 -2.92236,-2.62574 -3.59802,-2.01858 -4.334103,-1.44162 -5.0702,-0.86484 -5.80627,-0.28824 -4.76547,0.1593 -4.23282,0.47791 -6.86695,1.91162 -5.04223,2.98828 -3.61401,3.95507 -2.14283,4.53687 -0.7146,4.82251 1.40625,6.88892 4.21875,5.54858 3.26035,2.31812 4.19986,2.07641 5.13919,1.83472 6.07834,1.59302 6.54785,1.81226 3.64746,1.92211 2.19727,4.48242 -2.33008,4.65821 -6.54688,1.97851 -5.05371,-0.97827 -3.73535,-2.93384 -1.57153,-2.9663 -0.93433,-4.06495 -4.73486,0.29688 -4.73487,0.29687 -4.73486,0.29688 -4.73486,0.29687 0.76065,4.6637 1.44711,4.23523 2.13376,3.80676 2.82059,3.3783 3.79577,2.76855 5.0592,1.97754 6.32264,1.18652 7.58606,0.39551 9.481626,-0.95145 -7.224723,-0.043 -7.224724,-0.043 -7.224723,-0.043 -7.224723,-0.043 -7.224723,-0.043 -7.224723,-0.043 -7.224724,-0.043 -7.224723,-0.043" d=d.split() - pts=np.ndarray((len(d)-1,2),dtype=np.float) + pts=np.ndarray((len(d)-1,2),dtype=np.float64) for i in range(pts.shape[0]): pts[i,:]=tuple(map(float,d[i+1].split(','))) diff --git a/swissmx.py b/swissmx.py index 4f6a244..a8231fa 100755 --- a/swissmx.py +++ b/swissmx.py @@ -3453,7 +3453,7 @@ Author Thierry Zamofing (thierry.zamofing@psi.ch) sp.setup_sync(verbose=True) sp.setup_coord_trf() - assert(points.dtcfgype==np.float) + assert(points.dtcfgype==np.float64) sp.points = points if TASK_GRID == task: