Files
PBSwissMX/matlab/identifyFxFyStage.m
2018-10-04 15:19:34 +02:00

220 lines
6.4 KiB
Matlab

function [mot1,mot2]=identifyFxFyStage()
%sample idfrd
%f = logspace(-1,1,100);
%[mag,phase] = bode(idtf([1 .2],[1 2 1 1]),f);
%response = mag.*exp(1j*phase*pi/180);
%m = idfrd(response,f,0.08);
function obj=loadData(path,motid)
obj=struct();
f=load(strcat(path,sprintf('curr_step%d.mat',motid)));
obj.currstep=f;
%prepend sone zeros to stable system identification
obj.currstep=iddata([zeros(10,1); obj.currstep.data(:,2)],[zeros(10,1); obj.currstep.data(:,3)],50E-6);
f=load(strcat(path,sprintf('full_bode_mot%d.mat',motid)));
obj.w=f.frq*2*pi; %convert from Hz to rad/s
if motid==2
f.db_mag(1:224)=f.db_mag(225); % reset bad values at low frequencies
end
obj.mag=10.^(f.db_mag/20); %mag not in dB
obj.phase=f.deg_phase*pi/180; %phase in rad
response = obj.mag.*exp(1j*obj.phase);
obj.meas= idfrd(response,obj.w,0);
end
function tfc=currstep(obj)
opt=tfestOptions;
opt.Display='off';
tfc = tfest(obj.currstep, 2, 0,opt);
s=str2ndOrd(tfc);
%disp(s);
%h = stepplot(tf1);
%l=obj.currstep.OutputData
t=(0:199)*50E-6;
[y,t]=step(tfc,t);
f=figure();
subplot(1,2,1);
plot(t,y*1000,'r',t,obj.currstep.OutputData(11:210),'b');
title(s);
subplot(1,2,2);
h=bodeplot(tfc,'r');
setoptions(h,'FreqUnits','Hz','Grid','on');
end
function s=str2ndOrd(tf)
den=tf.Denominator;
num=tf.Numerator;
k=num(1)/den(3);
w0=sqrt(den(3));
damp=den(2)/2/w0;
s=sprintf('k:%g w0:%g damp:%g\n',k,w0,damp);
end
function tf=fyModel()
num=[ 2.36527033e+11, 1.17108082e+13, 3.62387303e+17];
den=[ 1.00000000e+00, 6.64495206e+03, 2.12777376e+07, ...
1.23728427e+10, 3.07054470e+13, 1.72592127e+15, ...
5.39888656e+17];
tf=idtf(num,den);
end
function tf=fxModel()
num=[ 1.23284092e+11, 4.14791803e+13, 1.18702926e+18, ...
2.96296718e+20, 2.67179357e+24, 4.04662786e+26, ...
1.59131515e+30, 1.02778572e+32, 1.64551888e+35];
den=[ 1.00000000e+00, 6.93892369e+03, 3.17041055e+07, ...
7.66104262e+10, 2.36504992e+14, 2.23054854e+17, ...
5.12578678e+20, 2.04416512e+23, 3.27771400e+26, ...
4.77145416e+28, 3.85452959e+31, 1.28911178e+33, ...
9.52157664e+34];
tf=idtf(num,den);
end
function mot=fyStage()
mot=loadData('/home/zamofing_t/Documents/prj/SwissFEL/epics_ioc_modules/ESB_MX/python/MXTuning/18_10_02/',1);
mot.tfc=currstep(mot);
opt=tfestOptions;
opt.Display='off';
opt.initializeMethod='iv';
opt.WeightingFilter=[1,5;30,670]*(2*pi); % Hz->rad/s conversion
figure();
mot.tf2_0 = tfest(mot.meas, 2, 0, opt);disp(str2ndOrd(mot.tf2_0));
mot.tf_mdl= fyModel();
%h=bodeplot(mot.meas,'r',mot.tf4_2,'b',mot.tf6_4,'g');
h=bodeplot(mot.meas,'r',mot.tf2_0,'b',mot.tf_mdl,'g',mot.w);
setoptions(h,'FreqUnits','Hz','Grid','on');
end
function mot=fxStage()
mot=loadData('/home/zamofing_t/Documents/prj/SwissFEL/epics_ioc_modules/ESB_MX/python/MXTuning/18_10_02/',2);
currstep(mot);
opt=tfestOptions;
opt.Display='off';
opt.initializeMethod='iv';
opt.WeightingFilter=[1,4;10,670]*(2*pi); % Hz->rad/s conversion
figure();
mot.tf2_0 = tfest(mot.meas, 2, 0, opt);disp(str2ndOrd(mot.tf2_0));
mot.tf13_9 = tfest(mot.meas, 13, 9, opt);
mot.tf_mdl = fxModel();
%h=bodeplot(mot.meas,'r',mot.tf4_2,'b',mot.tf6_4,'g',mot.tf13_9,'m',mot.tf_py,'b');
h=bodeplot(mot.meas,'r',mot.tf2_0,'b',mot.tf_mdl,'g',mot.w);
setoptions(h,'FreqUnits','Hz','Grid','on');
%controlSystemDesigner('bode',1,mot.tf_py); % <<<<<<<<< This opens a transferfiûnction that can be edited
end
close all
mot1=fyStage();
mot2=fxStage();
end
function f=SCRATCH()
[m1,m2]=identifyFxFyStage();
controlSystemDesigner(1,m2.tf_py); % <<<<<<<<< This opens a transferfiûnction that can be edited
%identification toolbox
systemIdentification
%opt=tfestOptions('Display','off');
%opt=tfestOptions('Display','on','initializeMethod','svf');
%opt=tfestOptions('Display','on','initializeMethod','iv','WeightingFilter',[]);
%opt=tfestOptions('Display','on','initializeMethod','iv','WeightingFilter',[1,5;20,570]);
%tf1 = tfest(mot1frq, 6, 4, opt);
% Model refinement
% Options = tf1.Report.OptionsUsed;
% Options.WeightingFilter = 'prediction';
% tf1_1 = pem(mot1frq, tf1, Options)
bodeplot(mot1frq,tf1)
mag,phase=bode(tf1,frq)
figure(1)
subplot(211)
bodeplot(tf1)
Opt = n4sidOptions('N4Horizon',[15 15 15]);
n4s3 = n4sid(mot1frq, 3, Opt)
%tf([1 2],[1 0 10])
%specifies the transfer function (s+2)/(s^2+10) while
sys=tf([1],[1,0,0])
bode(sys)
step(sys)
sys=tf([1],[1,-1,2]) %instable
sys=tf([1],[1,1,2]) %stable
%0dB at 12 Hz=12*2*pi rad/s =75.4=k^2 -> k=8.6833
sys=tf([10],[1,0,0])
%1/s^2 -> 0dB at 1Hz -40dB/decade
%10=+20dB
sys=tf([1],[1,0,2]) %not damped constant sine after step
sys=zpk([],[1,0,0],100) %stable
sys=zpk([],[-10,-10],100)
%parker stage 1
%!encoder_sim(enc=1,tbl=9,mot=9,posSf=13000./2048)
%!encoder_inc(enc=1,tbl=1,mot=1,posSf=13000./650000)
%!motor_servo(mot=1,ctrl='ServoCtrl',Kp=25,Kvfb=400,Ki=0.02,Kvff=350,Kaff=5000,MaxInt=1000)
%!motor(mot=1,dirCur=0,contCur=800,peakCur=2400,timeAtPeak=1,IiGain=5,IpfGain=8,IpbGain=8,JogSpeed=10.,numPhase=3,invDir=True,servo=None,PhasePosSf=1./81250,PhaseFindingDac=100,PhaseFindingTime=50,SlipGain=0,AdvGain=0,PwmSf=10000,FatalFeLimit=200,WarnFeLimit=100,InPosBand=2,homing='enc-index')
Ts=2E-4 % discrete sample time (servo period)
Kp=25,Kvfb=400,Ki=0.02,Kvff=350,Kaff=5000,MaxInt=1000
Kp=25,Kvfb=0,Ki=0,Kvff=0,Kaff=0,MaxInt=0
num=7.32
den=[5.995e-04 4.897e-02 1.]
open('stage_closed_loop.slx')
%sim('stage_closed_loop.slx')
sys=tf(num,den)
bode(sys)
G = tf(1.5,[1 14 40.02]);
controlSystemDesigner('bode',sys);
controlSystemDesigner
linearSystemAnalyzer
load ltiexamples
linearSystemAnalyzer(sys_dc)
controlSystemDesigner('bode',sys);
controlSystemDesigner(1,sys); % <<<<<<<<< This opens a transferfiûnction that can be edited
num=[8.32795069e-11, 1.04317228e-08, 6.68431323e-05, 3.31861324e-03, 7.32824533e+00];
den=[5.26156641e-18, 1.12897840e-14, 7.67853031e-12, 1.03201301e-08, 2.05154780e-06, 1.34279894e-03, 7.19229912e-02, 1.00000000e+00];
mot2=tf(num,den);
controlSystemDesigner('bode',mot2);
end