Files
PBSwissMX/python/MXTuning.py
2019-01-25 14:00:01 +01:00

566 lines
20 KiB
Python
Executable File

#!/usr/bin/env python
# *-----------------------------------------------------------------------*
# | |
# | Copyright (c) 2016 by Paul Scherrer Institute (http://www.psi.ch) |
# | |
# | Author Thierry Zamofing (thierry.zamofing@psi.ch) |
# *-----------------------------------------------------------------------*
'''
tuning functions for ESB-MX
Modes:
bit 0=1: record/plot current step
bit 1=2: custom chirp record/plot for IdCmd->ActPos transfer function
bit 1=4: custom chirp record/plot for DesPos->ActPos transfer function
bit 2=8: plot the full bode recording
bit 3=16: plot the full bode recording with an approximation model
bit 4=32: plot all raw acquired data files
bit 5=64: generate observer code (after files generated with matlab)
-> check https://github.com/klauer/ppmac for fast data gathering server which supports
phase gathering -> not yet compiling: /home/zamofing_t/Documents/prj/SwissFEL/PowerBrickInspector/ppmac/fast_gather
BUT data acquired and stored in: /media/zamofing_t/DataUbuHD/VirtualBox/shared/data
'''
import os, sys, json, time
import numpy as np
import matplotlib as mpl
#mpl.use('GTKAgg')
import matplotlib.pyplot as plt
from scipy import signal
sys.path.insert(0,os.path.expanduser('~/Documents/prj/SwissFEL/PBTools/'))
#import pbtools.misc.pp_comm as pp_comm -> pp_comm.PPComm
from pbtools.misc.pp_comm import PPComm,GpasciiChannel
from pbtools.misc.gather import Gather
from pbtools.misc.tuning import Tuning
class MXTuning(Tuning):
tuneDir='/opt/ppmac/tune/'
def __init__(self,comm,gather):
Tuning.__init__(self,comm,gather)
self.homed=False
def init_stage(self,fn=''):
comm=self.comm
if comm is None or self.homed or os.path.isfile(fn):
return
gpascii=comm.gpascii
sys.stdout.write('homing stage');sys.stdout.flush()
gpascii.send_line('enable plc1')
time.sleep(.2)
while True:
act=gpascii.get_variable('Plc[1].Active',type_=int)
if act==0:
sys.stdout.write('\n')
break
sys.stdout.write('.');sys.stdout.flush()
time.sleep(.2)
self.homed=True
def bode_model_plot(self, mot):
self.bode_full_plot(mot,self.baseDir)
fig=plt.gcf()
_N=1.#E-3 # normalization factor: -> moves 3 decades to right but has factors around 1
# s -> ms
# Hz -> kHz
# rad/s -> rad/ms
if mot==1:
#identify matlab: k:0.671226 w0:134.705 damp:0.191004
mag1=0.671226 #10**(db_mag1/20)
db_mag1=20*np.log10(mag1)#dB
w1=134.705*_N #rad/sec
f1=w1/2/np.pi; # ca. 6.5Hz
T1=1/w1
d1=0.19 # daempfung =1 -> keine resonanz -> den1= np.poly1d([T1,1])**2
num1=np.poly1d([mag1])
den1 = np.poly1d([T1**2,2*T1*d1,1])
#reiner integrator: 30Hz=0dB -> k=30*2*pi=180
#num1=np.poly1d([120*120])
#den1 = np.poly1d([1,0,0])
#first resonance frequency
f2=np.array([197,199])
d2=np.array([.02,.02])#daempfung
w2=f2*2*np.pi*_N #rad/sec
T2=1/w2
num2 = np.poly1d([T2[0]**2,2*T2[0]*d2[0],1])
den2 = np.poly1d([T2[1]**2,2*T2[1]*d2[1],1])
mdl= signal.lti(num2, den2) #num denum
#bode(mdl)
#current loop 2nd order approx
#identification with matlab: k=1, w0=8725, d=0.75
dc=.75 # daempfung =1 -> keine resonanz -> den1= np.poly1d([T1,1])**2
wc=8725.*_N # rad/sec
#...but phase lag seems to have earlier effect -> reduce wc
wc*=.5 # rad/sec
fc=wc/2/np.pi # ca 1388Hz
Tc=1/wc
numc = np.poly1d([1.])
denc = np.poly1d([Tc**2,2*Tc*dc,1])
num=num1*num2*numc#*num3
den=den1*den2*denc#*den3
mdl= signal.lti(num, den) #num denum
print(num)
print(den)
print(mdl)
d={'num':num.coeffs,'num1':num1.coeffs,'num2':num2.coeffs,'numc':numc.coeffs,
'den':den.coeffs,'den1':den1.coeffs,'den2':den2.coeffs,'denc':denc.coeffs}
fn=os.path.join(self.baseDir,'model%d.mat'%mot)
import scipy.io
scipy.io.savemat(fn, mdict=d)
print('save to matlab file:'+fn)
elif mot==2:
#identify matlab: k:1.7282 w0:51.069 damp:0.327613
mag1=1.7282 #10**(db_mag1/20)
db_mag1=20*np.log10(mag1)#dB
w1=51.069*_N #rad/sec
f1=w1/2/np.pi; # ca. 6.5Hz
T1=1/w1
d1=0.32 # daempfung =1 -> keine resonanz -> den1= np.poly1d([T1,1])**2
num1=np.poly1d([mag1])
den1 = np.poly1d([T1**2,2*T1*d1,1])
#resonance frequency
f2=np.array([57.8,61.8])
d2=np.array([.08,.095])#daempfung
w2=f2*2*np.pi #rad/sec
T2=1/w2
num2 = np.poly1d([T2[0]**2,2*T2[0]*d2[0],1])
den2 = np.poly1d([T2[1]**2,2*T2[1]*d2[1],1])
mdl= signal.lti(num2, den2) #num denum
#bode(mdl)
#resonance frequency
f3=np.array([136,148])
d3=np.array([.05,.05])#daempfung
w3=f3*2*np.pi #rad/sec
T3=1/w3
num3 = np.poly1d([T3[0]**2,2*T3[0]*d3[0],1])
den3 = np.poly1d([T3[1]**2,2*T3[1]*d3[1],1])
#mdl= signal.lti(num3, den3) #num denum
#bode(mdl)
#resonance frequency
f4=np.array([410,417])
d4=np.array([.015,.015])#daempfung
w4=f4*2*np.pi #rad/sec
T4=1/w4
num4 = np.poly1d([T4[0]**2,2*T4[0]*d4[0],1])
den4 = np.poly1d([T4[1]**2,2*T4[1]*d4[1],1])
#mdl= signal.lti(num3, den3) #num denum
#bode(mdl)
#resonance frequency
f5=np.array([230,233])
d5=np.array([.04,.04])#daempfung
w5=f5*2*np.pi #rad/sec
T5=1/w5
num5 = np.poly1d([T5[0]**2,2*T5[0]*d5[0],1])
den5 = np.poly1d([T5[1]**2,2*T5[1]*d5[1],1])
#current loop 2nd order approx
#identification with matlab: k=1, w0=8725, d=0.75
dc=.75 # daempfung =1 -> keine resonanz -> den1= np.poly1d([T1,1])**2
wc=8725.*_N # rad/sec
#...but phase lag seems to have earlier effect -> reduce wc
wc*=.5 # rad/sec
fc=wc/2/np.pi # ca 1388Hz
Tc=1/wc
numc = np.poly1d([1.])
denc = np.poly1d([Tc**2,2*Tc*dc,1])
num=num1*num2*num3*num4*num5*numc
den=den1*den2*den3*den4*den5*denc
mdl= signal.lti(num, den) #num denum
print(num)
print(den)
print(mdl)
d={'num':num.coeffs,'num1':num1.coeffs,'num2':num2.coeffs,'num3':num3.coeffs,'num4':num4.coeffs,'num5':num5.coeffs,'numc':numc.coeffs,
'den':den.coeffs,'den1':den1.coeffs,'den2':den2.coeffs,'den3':den3.coeffs,'den4':den4.coeffs,'den5':den5.coeffs,'denc':denc.coeffs}
fn=os.path.join(self.baseDir,'model%d.mat'%mot)
import scipy.io
scipy.io.savemat(fn, mdict=d)
print('save to matlab file:'+fn)
bode(mdl)
w=np.logspace(0,np.log10(2000),1000)*2*np.pi
w,mag,phase = signal.bode(mdl,w)
f=w/(2*np.pi)
ax=fig.axes[0]
ax.semilogx(f, mag,'-k',lw=1) # Bode magnitude plot
ax=fig.axes[1]
ax.semilogx(f, phase,'-k',lw=1) # Bode phase plot
# tp print see also: print(np.poly1d([1,2,3], variable='s')), print(np.poly1d([1,2,3], r=True, variable='s'))
def usr_servo_gen_code(self,fn='/tmp/ssc1.mat'):
import scipy.io,re
#the file ssc[1|2].mat has been generated with matlab:
#[mot1, mot2]=identifyFxFyStage();
#[pb]=simFxFyStage(mot1);
#[ssc]=StateSpaceControlDesign(mot1);
mat=scipy.io.loadmat(fn)
motid=int(re.search('(\d)\.mat',fn).group(1))
A=mat['Aoz']
B=mat['Boz']
C=mat['Coz']
D=mat['Doz']
V=mat['V']
u=('DesPos','IqMeas','IqVolts','ActPos')
y=('obsvOut',)
progSample='''double usr_servo_ctrl_{motid}(MotorData *Mptr)
{{
pshm->P[2000]=pshm->P[2000]*.9999+abs(Mptr->PosError)*0.0001; //lowpass of Position error
return pshm->ServoCtrl(Mptr);
}}'''.format(motid=motid)
prog='''double obsvr_servo_ctrl_{motid}(MotorData *Mptr)
{{
//x[n+1]=A*x[n]+B*u
//y=C*x[n]+D*x[n]
//u=[{u}].T
double x[{A.shape[0]}]; //new state
static double _x[{A.shape[0]}]={{0,0,0,0}}; //old state
//double {u}; // input values
double {y},iqCmd; // output values
double maxDac=Mptr->MaxDac;
'''.format(motid=motid,A=A,xInit=','.join('0'*A.shape[0]),u=', '.join(u),y=', '.join(y))
s=' //input values\n'
for i in range(len(u)):
s+=' double {u}=Mptr->{u};\n'.format(u=u[i])
prog+=s+'''
if (Mptr->ClosedLoop)
{
'''
s=' //x[n+1]=A*x[n]+B*u;\n'
for i in range(A.shape[0]):
s+=' x[%d]='%i
for j in range(A.shape[1]):
s+='%+28.22g*_x[%d]'%(A[i,j],j)
for j in range(B.shape[0]):
s+='%+28.22g*%s'%(B[i,j],u[j])
s+=';\n'
prog+=s+'\n'
s=' //y=C*x[n]+D*x[n];\n'
for i in range(C.shape[0]):
s+=' %s='%y[i]
for j in range(C.shape[1]):
s+='%+28.22g*_x[%d]'%(C[i,j],j)
s+=';\n'
prog+=s+'\n'
prog+=''' iqCmd=DesPos*{V}-{y};
//return iqCmd;
pshm->P[200{motid}]=iqCmd; //lowpass of Position error
return pshm->ServoCtrl(Mptr);
}}
else
{{
Mptr->Servo.Integrator=0.0;
return 0.0;
}}
}}'''.format(V=V[0,0],y=y[0],motid=motid)
hdr='''double obsvr_servo_ctrl_{motid}(MotorData *Mptr);
EXPORT_SYMBOL(obsvr_servo_ctrl_{motid});'''.format(motid=motid)
return (hdr,prog)
def check_fast_stage(self,file='/tmp/gather.npz'):
if os.path.isfile(file):
f=np.load(file)
data=f['data']
meta=f['meta'].item()
meta['file']=file
else:
#self.init_stage();time sleep
phase=False
motor=2
gpascii = self.comm.gpascii
gt = self.gather
gt.set_phasemode(phase)
address=('Motor[2].ActPos','Motor[8].ActPos')
gt.set_address(*address)
gt.set_property(Period=1)
tSrv=gpascii.servo_period
tSrv=2E-4 # seconds
phOsv = gpascii.get_variable('sys.PhaseOverServoPeriod', float)
subs={'prgId':999,'mot':motor,'num':100,'phase':'Phase' if phase else ''}
#the servoloop is called 2 times per servo cycle ?!?
#don't know why, but this is the reason why the value L10 is incremented by 0.5
prog = '''
&1
open prog {prgId}
P1=Motor[{mot}].DesPos-Motor[{mot}].HomePos
Q2=10
Gather.{phase}Enable=2
Q1={num}
while (Q1>0)
{{
jog{mot}=(P1-1000)
dwell 10
jog{mot}=(P1)
dwell 10
Q1=Q1-1
}}
dwell 10
Gather.{phase}Enable=0
close
&1
b{prgId}r
'''.format(**subs)
gpascii.send_line(prog)
res=gpascii.sync()
res=res.replace(GpasciiChannel.ACK+'\r\n','')
print(res)
t=time.time()
gt.wait_stopped()
print('time %f'%(time.time()-t))
self.data=data=gt.upload()
meta={'motor':motor,'date':time.asctime(),'ts':tSrv if not phase else tSrv*phOsv,'address':address}
np.savez_compressed(file, data=data, meta=meta)
meta['file'] = file
tSrv=meta['ts']
t=tSrv*np.arange(data.shape[0])
data=data-data[0,:]
plt.plot(t,data[:,0],t,data[:,1])
plt.figure()
plt.plot(t,data[:,0]-data[:,1])
plt.show()
def run(self,mode):
#plt.ion()
if mode&1: # full recording current step
plt.close('all')
self.homed=False
for mot in (1, 2):
fn=os.path.join(self.baseDir, 'curr_step%d.npz' % mot)
self.init_stage(fn)
self.bode_current(motor=mot, magMove=1000, magPhase=500, dwell=10, file=fn)
plt.show(block=False)
f=np.load(fn)
fn=fn[:-3]+'mat'
import scipy.io
scipy.io.savemat(fn, mdict=f)
print('save to matlab file:'+fn)
if mode&2:
plt.close('all')
self.homed=False
motLst = (1, 2) # (2,)#
#recType:
# IA 0 IqCmd,ActPos (for plant transfer function)
# DA 1 DesPos,ActPos (for regulation transfer function)
# all 2 DesPos,ActPos,IqCmd,IqMeas,IqVolts (for current, plant and regulation transfer function)
#>>>>> IqCmd->ActPos transfer function (plant) using closed loop for low frequencies
for mot in motLst:
fn = os.path.join(self.baseDir, 'chirp_IA_%da.npz' % mot)
self.init_stage(fn)
self.custom_chirp(motor=mot, minFrq=1, maxFrq=15, amp=1000, tSec=15, recType=0,openLoop=False, file=fn)
self.homed=False
#>>>>> IqCmd->ActPos transfer function (plant) using open loop for high frequencies
for ext,amp,minFrq,maxFrq,tSec in (('b', 10, 10, 100*1.5, 30),
('c', 50, 100, 300*1.5, 30),
('d', 50, 300, 1000*1.5, 10),
('e', 100, 1000, 2000, 10)):
self.homed=False
for mot in motLst:
fn = os.path.join(self.baseDir, 'chirp_IA_%d%s.npz' % (mot,ext))
self.init_stage(fn)
self.custom_chirp(motor=mot, minFrq=minFrq, maxFrq=maxFrq, amp=amp, tSec=tSec, recType=0,openLoop=True, file=fn)
if mode&4:
plt.close('all')
self.homed = False
motLst = (1, 2) # (2,)#
#>>>>> desPos->actPos transfer function (regulation) using closed loop
#motor1: 0dB at 20.4 Hz
#motor2: 0dB at 11.3 Hz
#1000um ampl. 15Hz ca. 2A current
#100um ampl. 15Hz ca. 200mA current
#100um at 11.3 Hz needs 100mA ->2A at sqrt(20)*11.3 =50Hz
#20um at 11.3 Hz needs 20mA ->2A at sqrt(100)*11.3 =113Hz
# 5um at 11.3 Hz needs 5mA ->2A at sqrt(2000/)*11.3 =226Hz
# 1um at 11.3 Hz needs 1mA ->2A at sqrt(2000)*11.3 =505Hz
#n times freq, -> n^2 current
for ext,amp,minFrq,maxFrq,tSec in (('a', 100, 1, 30*1.5, 10),
('b', 20, 30, 75*1.5, 15),
('c', 5, 75, 150*1.5, 5),
('d', 1, 150, 750, 5)):
self.homed=False
for mot in motLst:
fn = os.path.join(self.baseDir, 'chirp_DA_%d%s.npz' % (mot,ext))
self.init_stage(fn)
self.custom_chirp(motor=mot, minFrq=minFrq, maxFrq=maxFrq, amp=amp, tSec=tSec, recType=1,openLoop=False, file=fn)
#>>>>> all data for different transfer function
for ext,amp,minFrq,maxFrq,tSec in (('a', 5, 10, 250, 10),):
self.homed=False
for mot in motLst:
fn = os.path.join(self.baseDir, 'chirp_all_%d%s.npz' % (mot,ext))
self.init_stage(fn)
self.custom_chirp(motor=mot, minFrq=minFrq, maxFrq=maxFrq, amp=amp, tSec=tSec, recType=2,openLoop=False, file=fn)
if os.path.isfile(fn):
f = np.load(fn)
data = f['data']
meta = f['meta'].item()
meta['file'] = file
if len(meta['address']) == 4:
for xy in ((0, 1), (0, 3), (2, 3)):
self.bode_plot(data, xy=xy, mode=25, **meta)
if mode&8: #plot the full bode recording
plt.close('all')
self.bode_full_plot(mot=1,base=self.baseDir)
self.bode_full_plot(mot=2,base=self.baseDir)
if mode&16: #plot the full bode recording with an approximation model
plt.close('all')
self.bode_model_plot(mot=1)
self.bode_model_plot(mot=2)
if mode&32: # plot all raw acquired data files
# display bode plots
import glob
for fn in glob.glob(os.path.join(self.baseDir,'*.npz')):
fh = np.load(fn)
meta = fh['meta'].item()
data = fh['data']
self.bode_plot(data, mode=25, **meta)
if mode&64: #generater code
#before this can be done, the observer controller has to be designed with matlab:
#s.a.ESB_MX/matlab/Readme.md
#clear;
#clear global;
#close all;
#[mot1,mot2]=identifyFxFyStage();
#[pb]=simFxFyStage(mot1);
#[ssc]=StateSpaceControlDesign(mot1);
#[pb]=simFxFyStage(mot2);
#[ssc]=StateSpaceControlDesign(mot2);
#after this go to: python/usr_code and call make to build the controller
#to activate the controller checkout: PBTools/pbtools/usr_servo_phase
base=os.path.dirname(__file__)
(hdr1,prog1)=self.usr_servo_gen_code('/tmp/ssc1.mat')
(hdr2,prog2)=self.usr_servo_gen_code('/tmp/ssc2.mat')
fn_ct=os.path.join(base,'usr_code/usrcode_template.c')
fn_ht=os.path.join(base,'usr_code/usrcode_template.h')
fnc=os.path.join(base,'usr_code/usrcode.c')
fnh=os.path.join(base,'usr_code/usrcode.h')
s=open(fn_ht).read()
s=s.replace('<usr_header>',hdr1+'\n\n'+hdr2)
fh=open(fnh,'w')
fh.write(s)
fh.close()
print(fnh+' generated.')
s=open(fn_ct).read()
s=s.replace('<usr_code>',prog1+'\n\n'+prog2)
fh=open(fnc,'w')
fh.write(s)
fh.close()
print(fnc+' generated.')
print('now compile it looking at PBTools/pbtools/usr_servo_phase/usrServoSample')
print('done')
plt.show()
def bode(mdl):
w,mag,phase = signal.bode(mdl,1000)
f=w/(2*np.pi)
fig = plt.figure()
ax = fig.add_subplot(2, 1, 1)
ax.semilogx(f,mag,'-') # Bode magnitude plot
ax.yaxis.set_label_text('dB ampl')
plt.grid(True)
ax = fig.add_subplot(2, 1, 2)
ax.semilogx(f,phase,'-') # Bode magnitude plot
ax.yaxis.set_label_text('phase')
ax.xaxis.set_label_text('frequency [Hz]')
plt.grid(True)
#plt.show()
if __name__=='__main__':
from argparse import ArgumentParser,RawDescriptionHelpFormatter
import logging
logger = logging.getLogger(__name__)
#logger = logging.getLogger('pbtools.misc.pp_comm')
logger.setLevel(logging.DEBUG)
logging.basicConfig(format=('%(asctime)s %(name)-12s '
'%(levelname)-8s %(message)s'),
datefmt='%m-%d %H:%M',
)
def parse_args():
'main command line interpreter function'
#usage: gpasciiCommunicator.py --host=PPMACZT84 myPowerBRICK.cfg
(h, t)=os.path.split(sys.argv[0]);cmd='\n '+(t if len(h)>3 else sys.argv[0])+' '
exampleCmd=('-n',
'-v15'
)
epilog=__doc__+'''
Examples:'''+''.join(map(lambda s:cmd+s, exampleCmd))+'\n '
parser=ArgumentParser(epilog=epilog,formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('--host', help='hostname', metavar='HOST', default='SAR-CPPM-EXPMX1')
parser.add_argument('--mode', '-m', type=int, help='modes (see below)', default=1)
parser.add_argument('--dir', help='dir', default='MXTuning')
args=parser.parse_args()
#plt.ion()
#args.host='MOTTEST-CPPM-CRM0573'
#args.host=None
if args.host is None:
comm=gt=None
else:
comm = PPComm(host=args.host)
gt = Gather(comm)
tune=MXTuning(comm,gt)
tune.baseDir=args.dir
assert(os.path.exists(tune.baseDir))
tune.run(args.mode)
#------------------ Main Code ----------------------------------
#ssh_test()'/tmp/usrcode.c'
ret=parse_args()
exit(ret)
#enable plc1
#./PBTuning.py --host SAR-CPPM-EXPMX1 --mode 1 --mot 1 --dir tmp
#./PBTuning.py --host SAR-CPPM-EXPMX1 --mode 1 --mot 2 --dir tmp
#-> at low frequencied the speed is too high and encoder looses steps
#enable plc1
#AFTER each chirp measurement do enable plc1 again!
#./PBTuning.py --host SAR-CPPM-EXPMX1 --mode 2 --mot 1 --dir tmp
#./PBTuning.py --host SAR-CPPM-EXPMX1 --mode 2 --mot 2 --dir tmp
#./PBTuning.py --host SAR-CPPM-EXPMX1 --plot tmp