316 lines
12 KiB
Matlab
316 lines
12 KiB
Matlab
|
|
function [mot1,mot2]=identifyFxFyStage()
|
|
%loads recorded data of the current step and bode diagrams of the stages then plots the bode diagrams and identifies
|
|
%the current step transfer function
|
|
%
|
|
%finally it builds a ss-Model of the stage with:
|
|
%
|
|
% u +-----------+ y
|
|
%iqCmd------->|1 1|-------> iqMeas
|
|
% | 2|-------> iqVolts
|
|
% | 3|-------> actPos
|
|
% +-----------+
|
|
%
|
|
% the returned motor objects mot1 and mot2 contains:
|
|
%
|
|
% w,mag,phase : (gathered data with Python)
|
|
% meas : a MATLAB idfrd model with data w,mag,phase
|
|
% mdl : a structure with the python numerators and denominators for the transfer functions
|
|
% tfc,tf_mdl : various transfer functions
|
|
% ssPlt : the final continous state space model of the plant (not observable, not controlable)
|
|
% ssMdl : the simplified continous state space model for the observer (observable, controlable)
|
|
% ssMdlNC : model without resonance and current loop
|
|
%
|
|
% The used data files (generated from Python) are:
|
|
% (located for now in: /home/zamofing_t/Documents/prj/SwissFEL/epics_ioc_modules/ESB_MX/python/MXTuning/18_10_02/ )
|
|
% - curr_step[1|2].mat
|
|
% - full_bode_mot[1|2].mat
|
|
% - model[1|2].mat
|
|
|
|
|
|
%References:
|
|
%create ss from tf MIMO:
|
|
%https://ch.mathworks.com/matlabcentral/answers/37152-how-to-convert-tf2ss-for-mimo-system
|
|
%http://ch.mathworks.com/help/control/ug/conversion-between-model-types.html#f3-1039600
|
|
%https://ch.mathworks.com/help/control/ref/append.html
|
|
|
|
function obj=loadData(path,motid)
|
|
obj=struct();
|
|
f=load(strcat(path,sprintf('curr_step%d.mat',motid)));
|
|
obj.currstep=f;
|
|
%prepend sone zeros to stable system identification
|
|
obj.currstep=iddata([zeros(10,1); obj.currstep.data(:,2)],[zeros(10,1); obj.currstep.data(:,3)],50E-6);
|
|
|
|
f=load(strcat(path,sprintf('full_bode_mot%d.mat',motid)));
|
|
obj.w=f.frq*2*pi; %convert from Hz to rad/s
|
|
if motid==2
|
|
f.db_mag(1:224)=f.db_mag(225); % reset bad values at low frequencies
|
|
end
|
|
obj.mag=10.^(f.db_mag/20); %mag not in dB
|
|
obj.phase=f.deg_phase*pi/180; %phase in rad
|
|
response = obj.mag.*exp(1j*obj.phase);
|
|
obj.meas= idfrd(response,obj.w,0);
|
|
|
|
fMdl=load(strcat(path,sprintf('model%d.mat',motid)));
|
|
obj.mdl=fMdl;
|
|
end
|
|
|
|
function tfc=currstep(obj)
|
|
opt=tfestOptions;
|
|
opt.Display='off';
|
|
tfc = tfest(obj.currstep, 2, 0,opt);
|
|
s=str2ndOrd(tfc);
|
|
t=(0:199)*50E-6;
|
|
[y,t]=step(tfc,t);
|
|
f=figure();f.Position=[200,100,900,500];
|
|
subplot(1,2,1);
|
|
plot(t*1000,obj.currstep.OutputData(11:210),'b',t*1000,y*1000,'r');
|
|
xlabel('ms')
|
|
ylabel('curr\_bits')
|
|
grid on;
|
|
legend('real signal','model','Location','southeast')
|
|
title(s);
|
|
subplot(1,2,2);
|
|
h=bodeplot(tfc,'r');
|
|
setoptions(h,'FreqUnits','Hz','Grid','on');
|
|
%print(sprintf('figures/currstep_%d',obj.id),'-dpng','-r0');
|
|
print(f,sprintf('figures/currstep_%d',obj.id),'-depsc');
|
|
end
|
|
|
|
function s=str2ndOrd(tf)
|
|
den=tf.Denominator;
|
|
num=tf.Numerator;
|
|
k=num(1)/den(3);
|
|
w0=sqrt(den(3));
|
|
damp=den(2)/2/w0;
|
|
s=sprintf('k:%g w0:%g damp:%g',k,w0,damp);
|
|
end
|
|
|
|
function chkCtrlObsv(ss,s)
|
|
P=ctrb(ss.A,ss.B);
|
|
if rank(ss.A)==rank(P)
|
|
ct='';%controlable
|
|
else
|
|
ct='not ';%not controlable
|
|
end
|
|
|
|
Q=obsv(ss.A,ss.C);
|
|
if rank(ss.A)==rank(Q)
|
|
ob='';%sys observable
|
|
else
|
|
ob='not ';%not observable
|
|
end
|
|
disp([s,' is ',ct,'controlable and ',ob,'observable.']);
|
|
end
|
|
|
|
function y=myNorm(y)
|
|
%normalizes num and den by factor 1000
|
|
%y.*10.^(3*(length(y):-1:1))
|
|
end
|
|
|
|
function plotBode(mot)
|
|
t1=tf(mot.ssPlt);t2=tf(mot.ssMdl_c1);t3=tf(mot.ssMdl_12);h=bodeplot(mot.meas,'r',t1(3,1),'g',t2(3,1),'b',t3(1,1),'m',mot.w);
|
|
setoptions(h,'FreqUnits','Hz','Grid','on');
|
|
p=getoptions(h);p.YLim{2}=[-360 90];p.YLimMode='manual';setoptions(h,p);
|
|
ax=h.getaxes();
|
|
legend(ax(1),'Location','sw',{'real','plant','no res','no cur + 1 res'});
|
|
print(gcf,sprintf('figures/plotBode_%d',mot.id),'-depsc');
|
|
end
|
|
|
|
function mot=fyStage()
|
|
motid=1;
|
|
%mot=loadData('/home/zamofing_t/Documents/prj/SwissFEL/epics_ioc_modules/ESB_MX/python/MXTuning/18_10_02/',motid);
|
|
mot=loadData('/home/zamofing_t/Documents/prj/SwissFEL/epics_ioc_modules/ESB_MX/python/MXTuning/19_01_29/',motid);
|
|
|
|
mot.id=motid;
|
|
mot.tfc=currstep(mot);
|
|
|
|
opt=tfestOptions;
|
|
opt.Display='off';
|
|
opt.initializeMethod='iv';
|
|
opt.WeightingFilter=[1,5;30,670]*(2*pi); % Hz->rad/s conversion
|
|
|
|
figure();
|
|
mot.tf2_0 = tfest(mot.meas, 2, 0, opt);disp(str2ndOrd(mot.tf2_0));
|
|
mot.tf_mdl=idtf(mot.mdl.num,mot.mdl.den);
|
|
%ss([g1 mot.tf_mdl],'minimal') this doesn't work as expected
|
|
|
|
tfc=tf(mot.mdl.numc,mot.mdl.denc); %current loop iqCmd->iqMeas
|
|
tf1=tf(mot.mdl.num1,mot.mdl.den1); %current to position
|
|
tf2=tf(mot.mdl.num2,mot.mdl.den2); %resonance
|
|
%state -space model: ssc:current ssm:mechanics ssa:all (current+mechanics)
|
|
|
|
% plant
|
|
% u +-----------+ y
|
|
%iqCmd------->|1 1|-------> iqMeas
|
|
% | 2|-------> iqVolts
|
|
% | 3|-------> actPos
|
|
% +-----------+
|
|
ssc=ss(tfc);
|
|
ssc.C=[ssc.C; 1E5* 2.4E-3 1E-3*ssc.C(2)*8.8]; % add output iqVolts: iqVolts= i_meas*R+i_meas'*L 2.4mH 8.8Ohm (took random scaling values)
|
|
ssm=ss(tf1*tf2); %iqMeas->ActPos
|
|
ssa=append(ssc,ssm);
|
|
ssa.A(3,2)=ssa.C(1,2)*ssa.B(3,2);
|
|
mot.ssPlt=ss(ssa.A,ssa.B(:,1),ssa.C,0); % single input, remove input iqMeas
|
|
mot.ssPlt.InputName{1}='iqCmd';
|
|
mot.ssPlt.OutputName{1}='iqMeas';
|
|
mot.ssPlt.OutputName{2}='iqVolts';
|
|
mot.ssPlt.OutputName{3}='actPos';
|
|
chkCtrlObsv(mot.ssPlt,'ssPlt fyStage');
|
|
%tf(ssa) % display all transfer functions
|
|
|
|
%simplified model without resonance
|
|
% u +-----------+ y
|
|
%iqCmd------->|1 1|-------> iqMeas
|
|
% | 2|-------> iqVolts
|
|
% | 3|-------> actPos
|
|
% +-----------+
|
|
ssm=ss(tf1); %iqMeas->ActPos
|
|
ssa=append(ssc,ssm);
|
|
ssa.A(3,2)=ssa.C(1,2)*ssa.B(3,2);
|
|
mot.ssMdl_c1=ss(ssa.A,ssa.B(:,1),ssa.C,0); % single input, remove input iqMeas
|
|
mot.ssMdl_c1.InputName{1}='iqCmd';
|
|
mot.ssMdl_c1.OutputName{1}='iqMeas';
|
|
mot.ssMdl_c1.OutputName{2}='iqVolts';
|
|
mot.ssMdl_c1.OutputName{3}='actPos';
|
|
chkCtrlObsv(mot.ssMdl_c1,'ssMdl_c1 fyStage');
|
|
|
|
%model without current loop, with one resonance
|
|
%this assumes that the iqCmd->iqMeas is not relevant for motion
|
|
% u +-----------+ y
|
|
%iqMeas------>|1 1|-------> actPos
|
|
% +-----------+
|
|
ssm=ss(tf1*tf2); %iqMeas->ActPos
|
|
mot.ssMdl_12=ssm; %iqMeas->ActPos without resonance frequencies
|
|
mot.ssMdl_12.InputName{1}='iqMeas';
|
|
mot.ssMdl_12.OutputName{1}='actPos';
|
|
chkCtrlObsv(mot.ssMdl_12,'ssMdl_12 fyStage');
|
|
|
|
%model without current loop, no resonance
|
|
%this assumes that the iqCmd->iqMeas is not relevant for motion
|
|
% u +-----------+ y
|
|
%iqMeas------>|1 1|-------> actPos
|
|
% +-----------+
|
|
ssm=ss(tf1); %iqMeas->ActPos
|
|
mot.ssMdl_1=ssm; %iqMeas->ActPos without resonance frequencies
|
|
mot.ssMdl_1.InputName{1}='iqMeas';
|
|
mot.ssMdl_1.OutputName{1}='actPos';
|
|
chkCtrlObsv(mot.ssMdl_1,'ssMdl_1 fyStage');
|
|
|
|
ssLst=["tfc","tf1","tf2","tfc*tf1","tf1*tf2","tfc*tf1*tf2"];
|
|
sys=[];
|
|
for s = ssLst
|
|
eval('sys=ss('+s+');')
|
|
%t=tf(sys);
|
|
%disp(evalc('t'))
|
|
chkCtrlObsv(sys,char(s));
|
|
end
|
|
|
|
%h=bodeplot(mot.meas,'r',mot.tf4_2,'b',mot.tf6_4,'g');
|
|
%h=bodeplot(mot.meas,'r',mot.tf2_0,'b',mot.tf_mdl,'g',mot.w);
|
|
plotBode(mot)
|
|
end
|
|
|
|
function mot=fxStage()
|
|
motid=2;
|
|
%mot=loadData('/home/zamofing_t/Documents/prj/SwissFEL/epics_ioc_modules/ESB_MX/python/MXTuning/18_10_02/',motid);
|
|
mot=loadData('/home/zamofing_t/Documents/prj/SwissFEL/epics_ioc_modules/ESB_MX/python/MXTuning/19_01_29/',motid);
|
|
mot.id=motid;
|
|
currstep(mot);
|
|
|
|
opt=tfestOptions;
|
|
opt.Display='off';
|
|
opt.initializeMethod='iv';
|
|
opt.WeightingFilter=[1,4;10,670]*(2*pi); % Hz->rad/s conversion
|
|
|
|
figure();
|
|
mot.tf2_0 = tfest(mot.meas, 2, 0, opt);disp(str2ndOrd(mot.tf2_0));
|
|
mot.tf13_9 = tfest(mot.meas, 13, 9, opt);
|
|
mot.tf_mdl=idtf(mot.mdl.num,mot.mdl.den);
|
|
|
|
tfc=tf(mot.mdl.numc,mot.mdl.denc); %current loop iqCmd->iqMeas
|
|
tf1=tf(mot.mdl.num1,mot.mdl.den1); %current to position
|
|
tf2=tf(mot.mdl.num2,mot.mdl.den2); %resonance
|
|
tf3=tf(mot.mdl.num3,mot.mdl.den3); %resonance
|
|
tf4=tf(mot.mdl.num4,mot.mdl.den4); %resonance
|
|
tf5=tf(mot.mdl.num5,mot.mdl.den5); %resonance
|
|
|
|
%state -space model: ssc:current ssm:mechanics ssa:all (current+mechanics)
|
|
|
|
% plant
|
|
% u +-----------+ y
|
|
%iqCmd------->|1 1|-------> iqMeas
|
|
% | 2|-------> iqVolts
|
|
% | 3|-------> actPos
|
|
% +-----------+
|
|
ssc=ss(tfc);
|
|
ssc.C=[ssc.C; 1E5* 2.4E-3 1E-3*ssc.C(2)*8.8]; % add output iqVolts: iqVolts= i_meas*R+i_meas'*L 2.4mH 8.8Ohm (took random scaling values)
|
|
ssm=ss(tf1*tf2*tf3*tf4*tf5); %iqMeas->ActPos
|
|
ssa=append(ssc,ssm);
|
|
ssa.A(3,2)=ssa.C(1,2)*ssa.B(3,2);
|
|
mot.ssPlt=ss(ssa.A,ssa.B(:,1),ssa.C,0); % single input, remove input iqMeas
|
|
mot.ssPlt.InputName{1}='iqCmd';
|
|
mot.ssPlt.OutputName{1}='iqMeas';
|
|
mot.ssPlt.OutputName{2}='iqVolts';
|
|
mot.ssPlt.OutputName{3}='actPos' ;
|
|
chkCtrlObsv(mot.ssPlt,'ssPlt fxStage');
|
|
|
|
%simplified model without resonance
|
|
% u +-----------+ y
|
|
%iqCmd------->|1 1|-------> iqMeas
|
|
% | 2|-------> iqVolts
|
|
% | 3|-------> actPos
|
|
% +-----------+
|
|
ssm=ss(tf1); %iqMeas->ActPos
|
|
ssa=append(ssc,ssm);
|
|
ssa.A(3,2)=ssa.C(1,2)*ssa.B(3,2);
|
|
mot.ssMdl_c1=ss(ssa.A,ssa.B(:,1),ssa.C,0); % single input, remove input iqMeas
|
|
mot.ssMdl_c1.InputName{1}='iqCmd';
|
|
mot.ssMdl_c1.OutputName{1}='iqMeas';
|
|
mot.ssMdl_c1.OutputName{2}='iqVolts';
|
|
mot.ssMdl_c1.OutputName{3}='actPos';
|
|
chkCtrlObsv(mot.ssMdl_c1,'ssMdl_c1 fxStage');
|
|
|
|
%model without current loop, with one resonance
|
|
%this assumes that the iqCmd->iqMeas is not relevant for motion
|
|
% u +-----------+ y
|
|
%iqMeas------>|1 1|-------> actPos
|
|
% +-----------+
|
|
ssm=ss(tf1*tf2); %iqMeas->ActPos
|
|
mot.ssMdl_12=ssm; %iqMeas->ActPos without resonance frequencies
|
|
mot.ssMdl_12.InputName{1}='iqMeas';
|
|
mot.ssMdl_12.OutputName{1}='actPos';
|
|
chkCtrlObsv(mot.ssMdl_12,'ssMdl_12 fxStage');
|
|
|
|
%model without current loop, no resonance
|
|
%this assumes that the iqCmd->iqMeas is not relevant for motion
|
|
% u +-----------+ y
|
|
%iqMeas------>|1 1|-------> actPos
|
|
% +-----------+
|
|
ssm=ss(tf1); %iqMeas->ActPos
|
|
mot.ssMdl_1=ssm; %iqMeas->ActPos without resonance frequencies
|
|
mot.ssMdl_1.InputName{1}='iqMeas';
|
|
mot.ssMdl_1.OutputName{1}='actPos';
|
|
chkCtrlObsv(mot.ssMdl_1,'ssMdl_1 fxStage');
|
|
|
|
ssLst=["tfc","tf1","tf2","tf3","tf4","tf5","tfc*tf1","tf1*tf2","tf1*tf2*tf3","tfc*tf1*tf2"];
|
|
sys=[];
|
|
for s = ssLst
|
|
eval('sys=ss('+s+');')
|
|
%t=tf(sys);
|
|
%disp(evalc('t'))
|
|
chkCtrlObsv(sys,char(s));
|
|
end
|
|
|
|
%h=bodeplot(mot.meas,'r',mot.tf4_2,'b',mot.tf6_4,'g',mot.tf13_9,'m',mot.tf_py,'b');
|
|
%h=bodeplot(mot.meas,'r',mot.tf2_0,'b',mot.tf_mdl,'g',mot.w);
|
|
plotBode(mot)
|
|
end
|
|
close all
|
|
mot1=fyStage();
|
|
mot2=fxStage();
|
|
%controlSystemDesigner('bode',1,mot1.tf_py); % <<<<<<<<< This opens a transferfiûnction that can be edited
|
|
|
|
|
|
end
|