Files
PBSwissMX/matlab/identifyFxFyStage.m
2019-02-05 16:51:35 +01:00

316 lines
12 KiB
Matlab

function [mot1,mot2]=identifyFxFyStage()
%loads recorded data of the current step and bode diagrams of the stages then plots the bode diagrams and identifies
%the current step transfer function
%
%finally it builds a ss-Model of the stage with:
%
% u +-----------+ y
%iqCmd------->|1 1|-------> iqMeas
% | 2|-------> iqVolts
% | 3|-------> actPos
% +-----------+
%
% the returned motor objects mot1 and mot2 contains:
%
% w,mag,phase : (gathered data with Python)
% meas : a MATLAB idfrd model with data w,mag,phase
% mdl : a structure with the python numerators and denominators for the transfer functions
% tfc,tf_mdl : various transfer functions
% ssPlt : the final continous state space model of the plant (not observable, not controlable)
% ssMdl : the simplified continous state space model for the observer (observable, controlable)
% ssMdlNC : model without resonance and current loop
%
% The used data files (generated from Python) are:
% (located for now in: /home/zamofing_t/Documents/prj/SwissFEL/epics_ioc_modules/ESB_MX/python/MXTuning/18_10_02/ )
% - curr_step[1|2].mat
% - full_bode_mot[1|2].mat
% - model[1|2].mat
%References:
%create ss from tf MIMO:
%https://ch.mathworks.com/matlabcentral/answers/37152-how-to-convert-tf2ss-for-mimo-system
%http://ch.mathworks.com/help/control/ug/conversion-between-model-types.html#f3-1039600
%https://ch.mathworks.com/help/control/ref/append.html
function obj=loadData(path,motid)
obj=struct();
f=load(strcat(path,sprintf('curr_step%d.mat',motid)));
obj.currstep=f;
%prepend sone zeros to stable system identification
obj.currstep=iddata([zeros(10,1); obj.currstep.data(:,2)],[zeros(10,1); obj.currstep.data(:,3)],50E-6);
f=load(strcat(path,sprintf('full_bode_mot%d.mat',motid)));
obj.w=f.frq*2*pi; %convert from Hz to rad/s
if motid==2
f.db_mag(1:224)=f.db_mag(225); % reset bad values at low frequencies
end
obj.mag=10.^(f.db_mag/20); %mag not in dB
obj.phase=f.deg_phase*pi/180; %phase in rad
response = obj.mag.*exp(1j*obj.phase);
obj.meas= idfrd(response,obj.w,0);
fMdl=load(strcat(path,sprintf('model%d.mat',motid)));
obj.mdl=fMdl;
end
function tfc=currstep(obj)
opt=tfestOptions;
opt.Display='off';
tfc = tfest(obj.currstep, 2, 0,opt);
s=str2ndOrd(tfc);
t=(0:199)*50E-6;
[y,t]=step(tfc,t);
f=figure();f.Position=[200,100,900,500];
subplot(1,2,1);
plot(t*1000,obj.currstep.OutputData(11:210),'b',t*1000,y*1000,'r');
xlabel('ms')
ylabel('curr\_bits')
grid on;
legend('real signal','model','Location','southeast')
title(s);
subplot(1,2,2);
h=bodeplot(tfc,'r');
setoptions(h,'FreqUnits','Hz','Grid','on');
%print(sprintf('figures/currstep_%d',obj.id),'-dpng','-r0');
print(f,sprintf('figures/currstep_%d',obj.id),'-depsc');
end
function s=str2ndOrd(tf)
den=tf.Denominator;
num=tf.Numerator;
k=num(1)/den(3);
w0=sqrt(den(3));
damp=den(2)/2/w0;
s=sprintf('k:%g w0:%g damp:%g',k,w0,damp);
end
function chkCtrlObsv(ss,s)
P=ctrb(ss.A,ss.B);
if rank(ss.A)==rank(P)
ct='';%controlable
else
ct='not ';%not controlable
end
Q=obsv(ss.A,ss.C);
if rank(ss.A)==rank(Q)
ob='';%sys observable
else
ob='not ';%not observable
end
disp([s,' is ',ct,'controlable and ',ob,'observable.']);
end
function y=myNorm(y)
%normalizes num and den by factor 1000
%y.*10.^(3*(length(y):-1:1))
end
function plotBode(mot)
t1=tf(mot.ssPlt);t2=tf(mot.ssMdl_c1);t3=tf(mot.ssMdl_12);h=bodeplot(mot.meas,'r',t1(3,1),'g',t2(3,1),'b',t3(1,1),'m',mot.w);
setoptions(h,'FreqUnits','Hz','Grid','on');
p=getoptions(h);p.YLim{2}=[-360 90];p.YLimMode='manual';setoptions(h,p);
ax=h.getaxes();
legend(ax(1),'Location','sw',{'real','plant','no res','no cur + 1 res'});
print(gcf,sprintf('figures/plotBode_%d',mot.id),'-depsc');
end
function mot=fyStage()
motid=1;
%mot=loadData('/home/zamofing_t/Documents/prj/SwissFEL/epics_ioc_modules/ESB_MX/python/MXTuning/18_10_02/',motid);
mot=loadData('/home/zamofing_t/Documents/prj/SwissFEL/epics_ioc_modules/ESB_MX/python/MXTuning/19_01_29/',motid);
mot.id=motid;
mot.tfc=currstep(mot);
opt=tfestOptions;
opt.Display='off';
opt.initializeMethod='iv';
opt.WeightingFilter=[1,5;30,670]*(2*pi); % Hz->rad/s conversion
figure();
mot.tf2_0 = tfest(mot.meas, 2, 0, opt);disp(str2ndOrd(mot.tf2_0));
mot.tf_mdl=idtf(mot.mdl.num,mot.mdl.den);
%ss([g1 mot.tf_mdl],'minimal') this doesn't work as expected
tfc=tf(mot.mdl.numc,mot.mdl.denc); %current loop iqCmd->iqMeas
tf1=tf(mot.mdl.num1,mot.mdl.den1); %current to position
tf2=tf(mot.mdl.num2,mot.mdl.den2); %resonance
%state -space model: ssc:current ssm:mechanics ssa:all (current+mechanics)
% plant
% u +-----------+ y
%iqCmd------->|1 1|-------> iqMeas
% | 2|-------> iqVolts
% | 3|-------> actPos
% +-----------+
ssc=ss(tfc);
ssc.C=[ssc.C; 1E5* 2.4E-3 1E-3*ssc.C(2)*8.8]; % add output iqVolts: iqVolts= i_meas*R+i_meas'*L 2.4mH 8.8Ohm (took random scaling values)
ssm=ss(tf1*tf2); %iqMeas->ActPos
ssa=append(ssc,ssm);
ssa.A(3,2)=ssa.C(1,2)*ssa.B(3,2);
mot.ssPlt=ss(ssa.A,ssa.B(:,1),ssa.C,0); % single input, remove input iqMeas
mot.ssPlt.InputName{1}='iqCmd';
mot.ssPlt.OutputName{1}='iqMeas';
mot.ssPlt.OutputName{2}='iqVolts';
mot.ssPlt.OutputName{3}='actPos';
chkCtrlObsv(mot.ssPlt,'ssPlt fyStage');
%tf(ssa) % display all transfer functions
%simplified model without resonance
% u +-----------+ y
%iqCmd------->|1 1|-------> iqMeas
% | 2|-------> iqVolts
% | 3|-------> actPos
% +-----------+
ssm=ss(tf1); %iqMeas->ActPos
ssa=append(ssc,ssm);
ssa.A(3,2)=ssa.C(1,2)*ssa.B(3,2);
mot.ssMdl_c1=ss(ssa.A,ssa.B(:,1),ssa.C,0); % single input, remove input iqMeas
mot.ssMdl_c1.InputName{1}='iqCmd';
mot.ssMdl_c1.OutputName{1}='iqMeas';
mot.ssMdl_c1.OutputName{2}='iqVolts';
mot.ssMdl_c1.OutputName{3}='actPos';
chkCtrlObsv(mot.ssMdl_c1,'ssMdl_c1 fyStage');
%model without current loop, with one resonance
%this assumes that the iqCmd->iqMeas is not relevant for motion
% u +-----------+ y
%iqMeas------>|1 1|-------> actPos
% +-----------+
ssm=ss(tf1*tf2); %iqMeas->ActPos
mot.ssMdl_12=ssm; %iqMeas->ActPos without resonance frequencies
mot.ssMdl_12.InputName{1}='iqMeas';
mot.ssMdl_12.OutputName{1}='actPos';
chkCtrlObsv(mot.ssMdl_12,'ssMdl_12 fyStage');
%model without current loop, no resonance
%this assumes that the iqCmd->iqMeas is not relevant for motion
% u +-----------+ y
%iqMeas------>|1 1|-------> actPos
% +-----------+
ssm=ss(tf1); %iqMeas->ActPos
mot.ssMdl_1=ssm; %iqMeas->ActPos without resonance frequencies
mot.ssMdl_1.InputName{1}='iqMeas';
mot.ssMdl_1.OutputName{1}='actPos';
chkCtrlObsv(mot.ssMdl_1,'ssMdl_1 fyStage');
ssLst=["tfc","tf1","tf2","tfc*tf1","tf1*tf2","tfc*tf1*tf2"];
sys=[];
for s = ssLst
eval('sys=ss('+s+');')
%t=tf(sys);
%disp(evalc('t'))
chkCtrlObsv(sys,char(s));
end
%h=bodeplot(mot.meas,'r',mot.tf4_2,'b',mot.tf6_4,'g');
%h=bodeplot(mot.meas,'r',mot.tf2_0,'b',mot.tf_mdl,'g',mot.w);
plotBode(mot)
end
function mot=fxStage()
motid=2;
%mot=loadData('/home/zamofing_t/Documents/prj/SwissFEL/epics_ioc_modules/ESB_MX/python/MXTuning/18_10_02/',motid);
mot=loadData('/home/zamofing_t/Documents/prj/SwissFEL/epics_ioc_modules/ESB_MX/python/MXTuning/19_01_29/',motid);
mot.id=motid;
currstep(mot);
opt=tfestOptions;
opt.Display='off';
opt.initializeMethod='iv';
opt.WeightingFilter=[1,4;10,670]*(2*pi); % Hz->rad/s conversion
figure();
mot.tf2_0 = tfest(mot.meas, 2, 0, opt);disp(str2ndOrd(mot.tf2_0));
mot.tf13_9 = tfest(mot.meas, 13, 9, opt);
mot.tf_mdl=idtf(mot.mdl.num,mot.mdl.den);
tfc=tf(mot.mdl.numc,mot.mdl.denc); %current loop iqCmd->iqMeas
tf1=tf(mot.mdl.num1,mot.mdl.den1); %current to position
tf2=tf(mot.mdl.num2,mot.mdl.den2); %resonance
tf3=tf(mot.mdl.num3,mot.mdl.den3); %resonance
tf4=tf(mot.mdl.num4,mot.mdl.den4); %resonance
tf5=tf(mot.mdl.num5,mot.mdl.den5); %resonance
%state -space model: ssc:current ssm:mechanics ssa:all (current+mechanics)
% plant
% u +-----------+ y
%iqCmd------->|1 1|-------> iqMeas
% | 2|-------> iqVolts
% | 3|-------> actPos
% +-----------+
ssc=ss(tfc);
ssc.C=[ssc.C; 1E5* 2.4E-3 1E-3*ssc.C(2)*8.8]; % add output iqVolts: iqVolts= i_meas*R+i_meas'*L 2.4mH 8.8Ohm (took random scaling values)
ssm=ss(tf1*tf2*tf3*tf4*tf5); %iqMeas->ActPos
ssa=append(ssc,ssm);
ssa.A(3,2)=ssa.C(1,2)*ssa.B(3,2);
mot.ssPlt=ss(ssa.A,ssa.B(:,1),ssa.C,0); % single input, remove input iqMeas
mot.ssPlt.InputName{1}='iqCmd';
mot.ssPlt.OutputName{1}='iqMeas';
mot.ssPlt.OutputName{2}='iqVolts';
mot.ssPlt.OutputName{3}='actPos' ;
chkCtrlObsv(mot.ssPlt,'ssPlt fxStage');
%simplified model without resonance
% u +-----------+ y
%iqCmd------->|1 1|-------> iqMeas
% | 2|-------> iqVolts
% | 3|-------> actPos
% +-----------+
ssm=ss(tf1); %iqMeas->ActPos
ssa=append(ssc,ssm);
ssa.A(3,2)=ssa.C(1,2)*ssa.B(3,2);
mot.ssMdl_c1=ss(ssa.A,ssa.B(:,1),ssa.C,0); % single input, remove input iqMeas
mot.ssMdl_c1.InputName{1}='iqCmd';
mot.ssMdl_c1.OutputName{1}='iqMeas';
mot.ssMdl_c1.OutputName{2}='iqVolts';
mot.ssMdl_c1.OutputName{3}='actPos';
chkCtrlObsv(mot.ssMdl_c1,'ssMdl_c1 fxStage');
%model without current loop, with one resonance
%this assumes that the iqCmd->iqMeas is not relevant for motion
% u +-----------+ y
%iqMeas------>|1 1|-------> actPos
% +-----------+
ssm=ss(tf1*tf2); %iqMeas->ActPos
mot.ssMdl_12=ssm; %iqMeas->ActPos without resonance frequencies
mot.ssMdl_12.InputName{1}='iqMeas';
mot.ssMdl_12.OutputName{1}='actPos';
chkCtrlObsv(mot.ssMdl_12,'ssMdl_12 fxStage');
%model without current loop, no resonance
%this assumes that the iqCmd->iqMeas is not relevant for motion
% u +-----------+ y
%iqMeas------>|1 1|-------> actPos
% +-----------+
ssm=ss(tf1); %iqMeas->ActPos
mot.ssMdl_1=ssm; %iqMeas->ActPos without resonance frequencies
mot.ssMdl_1.InputName{1}='iqMeas';
mot.ssMdl_1.OutputName{1}='actPos';
chkCtrlObsv(mot.ssMdl_1,'ssMdl_1 fxStage');
ssLst=["tfc","tf1","tf2","tf3","tf4","tf5","tfc*tf1","tf1*tf2","tf1*tf2*tf3","tfc*tf1*tf2"];
sys=[];
for s = ssLst
eval('sys=ss('+s+');')
%t=tf(sys);
%disp(evalc('t'))
chkCtrlObsv(sys,char(s));
end
%h=bodeplot(mot.meas,'r',mot.tf4_2,'b',mot.tf6_4,'g',mot.tf13_9,'m',mot.tf_py,'b');
%h=bodeplot(mot.meas,'r',mot.tf2_0,'b',mot.tf_mdl,'g',mot.w);
plotBode(mot)
end
close all
mot1=fyStage();
mot2=fxStage();
%controlSystemDesigner('bode',1,mot1.tf_py); % <<<<<<<<< This opens a transferfiûnction that can be edited
end