211 lines
5.1 KiB
Matlab
211 lines
5.1 KiB
Matlab
function [ssc]=testObserver(mot)
|
|
%http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlStateSpace
|
|
mdl=1; % 0:hovering ball 1:fast stage
|
|
if mdl==0
|
|
A = [ 0 1 0
|
|
980 0 -2.8
|
|
100
|
|
0 0 -100 ];
|
|
|
|
B = [ 0
|
|
0];
|
|
|
|
C = [ 1 0 0 ];
|
|
D=0;
|
|
else
|
|
[A,B,C,D]=ssdata(mot.ssMdl);
|
|
C=C(3,:);D=D(3);
|
|
numc=(mot.mdl.numc);
|
|
denc=(mot.mdl.denc);
|
|
num1=(mot.mdl.num1);
|
|
den1=(mot.mdl.den1);
|
|
|
|
g1=tf(numc,denc); % iqCmd->iqMeas
|
|
s1=ss(g1);
|
|
s1.C=[s1.C; 1E5* 2.4E-3 1E-3*s1.C(2)*8.8]; % add output iqVolts: iqVolts= i_meas*R+i_meas'*L 2.4mH 8.8Ohm (took random scaling values)
|
|
g2=tf(num1,den1); %iqMeas->ActPos without resonance frequencies
|
|
s2=ss(g2);
|
|
s3=append(s1,s2);
|
|
s3.A(3,2)=s3.C(1,2)*s3.B(3,2);
|
|
|
|
%d=.77;w0=9100; %1.44kHz -> T0=6.9046e-04
|
|
%numc=[w0^2];
|
|
%denc=[1 d*2*w0 w0^2];
|
|
%T0=6E-4; %w=1/1E-3=1E3 -> f=w/(2pi)=1000/6.2=159Hz
|
|
%numc=[1];
|
|
%denc=[T0^2 d*2*T0 1];
|
|
%bode(numc,denc)
|
|
|
|
num=conv(numc,num1);%num=1;
|
|
den=conv(denc,den1);%den=[1 0 0];
|
|
g4=tf(num,den); %iqMeas->ActPos
|
|
s4=ss(g4);
|
|
mot.ssMdl
|
|
s3
|
|
s4
|
|
[A,B,C,D]=ssdata(s4);
|
|
end
|
|
|
|
Ap=A;Am=A;
|
|
Bp=B;Bm=B;
|
|
Cp=C;Cm=C;
|
|
Dp=D;Dm=D;Dt=D;
|
|
|
|
poles = eig(A);
|
|
disp(poles);
|
|
|
|
|
|
if mdl==0
|
|
t = 0:0.01:2;
|
|
u = zeros(size(t));
|
|
x0 = [0.01 0 0];
|
|
|
|
sys = ss(A,B,C,D);
|
|
|
|
[y,t,x] = lsim(sys,u,t,x0);
|
|
plot(t,y)
|
|
title('Open-Loop Response to Non-Zero Initial Condition')
|
|
xlabel('Time (sec)')
|
|
ylabel('Ball Position (m)')
|
|
|
|
p1 = -10 + 10i; p2 = -10 - 10i; p3 = -50;
|
|
K = place(A,B,[p1 p2 p3]);
|
|
sys_cl = ss(A-B*K,B,C,0);
|
|
lsim(sys_cl,u,t,x0);
|
|
xlabel('Time (sec)')
|
|
ylabel('Ball Position (m)')
|
|
|
|
p1 = -20 + 20i; p2 = -20 - 20i; p3 = -100;
|
|
P=[p1 p2 p3];
|
|
K = place(A,B,P);
|
|
sys_cl = ss(A-B*K,B,C,0);
|
|
lsim(sys_cl,u,t,x0);
|
|
xlabel('Time (sec)')
|
|
ylabel('Ball Position (m)')
|
|
|
|
t = 0:0.01:2;
|
|
u = 0.001*ones(size(t));
|
|
|
|
sys_cl = ss(A-B*K,B,C,0);
|
|
|
|
lsim(sys_cl,u,t);
|
|
xlabel('Time (sec)')
|
|
ylabel('Ball Position (m)')
|
|
axis([0 2 -4E-6 0])
|
|
|
|
V=-1./(Cm*(Am-Bm*K)^-1*Bm); %(from Lineare Regelsysteme2 (Glattfelder) page:173 )
|
|
lsim(sys_cl,V*u,t)
|
|
title('Linear Simulation Results (with Nbar)')
|
|
xlabel('Time (sec)')
|
|
ylabel('Ball Position (m)')
|
|
axis([0 2 0 1.2*10^-3])
|
|
else
|
|
x0 = [0 0 0 0];
|
|
p1=-63+2.80i;
|
|
p2=-62+1.50i;
|
|
P=[p1 p1' p2 p2'];
|
|
P=[-4000+100j -4000-100j -500+10j -500-10j];
|
|
K = place(A,B,P);
|
|
Ts=1/5000
|
|
t = 0:Ts:2;
|
|
u = 0.001*ones(size(t));
|
|
V=-1./(Cm*(Am-Bm*K)^-1*Bm); %(from Lineare Regelsysteme2 (Glattfelder) page:173 )
|
|
sys_cl = ss(A-B*K,B*V,C,0);
|
|
|
|
lsim(sys_cl,u,t,x0);
|
|
xlabel('Time (sec)')
|
|
ylabel('Motor Position (m)')
|
|
axis([0 2 0 1.2E-3])
|
|
end
|
|
|
|
if mdl==0
|
|
op1 = -100;
|
|
op2 = -101;
|
|
op3 = -102;
|
|
OP=[op1,op2,op3];
|
|
OP=P*2;
|
|
L = place(A',C',OP)';
|
|
At = [ A-B*K B*K
|
|
zeros(size(A)) A-L*C ];
|
|
Bt = [ B*V
|
|
zeros(size(B)) ];
|
|
Ct = [ C zeros(size(C)) ];
|
|
|
|
sys = ss(At,Bt,Ct,0);
|
|
%lsim(sys,zeros(size(t)),t,[x0 x0]);
|
|
lsim(sys,u,t,[x0 x0]*0);
|
|
title('Linear Simulation Results (with observer)')
|
|
xlabel('Time (sec)')
|
|
ylabel('Ball Position (m)')
|
|
else
|
|
OP=P*2;
|
|
L = place(A',C',OP)';
|
|
At = [ A-B*K B*K
|
|
zeros(size(A)) A-L*C ];
|
|
Bt = [ B*V
|
|
zeros(size(B)) ];
|
|
Ct = [ C zeros(size(C)) ];
|
|
|
|
sys = ss(At,Bt,Ct,0);
|
|
lsim(sys,u,t,[x0 x0]*0);
|
|
title('Linear Simulation Results (with observer)')
|
|
xlabel('Time (sec)')
|
|
ylabel('Motor Position (m)')
|
|
axis([0 2 0 1.2E-3])
|
|
end
|
|
|
|
if mdl==0
|
|
t = 0:1E-6:0.1;
|
|
x0 = [0.01 0.5 -5];
|
|
[y,t,x] = lsim(sys,zeros(size(t)),t,[x0 x0]);
|
|
|
|
n = 3;
|
|
e = x(:,n+1:end);
|
|
x = x(:,1:n);
|
|
x_est = x - e;
|
|
|
|
% Save state variables explicitly to aid in plotting
|
|
h = x(:,1); h_dot = x(:,2); i = x(:,3);
|
|
h_est = x_est(:,1); h_dot_est = x_est(:,2); i_est = x_est(:,3);
|
|
|
|
plot(t,h,'-r',t,h_est,':r',t,h_dot,'-b',t,h_dot_est,':b',t,i,'-g',t,i_est,':g')
|
|
legend('h','h_{est}','hdot','hdot_{est}','i','i_{est}')
|
|
xlabel('Time (sec)')
|
|
end
|
|
|
|
|
|
%discrete
|
|
Ts=1/5000; % deltatau std. frq. is 5kHz
|
|
%The discrete system works with sampling >100Hz,. the bigger the frequency the better the result
|
|
%With sampling = 80Hz hte system already becomes instable.
|
|
ss_t=ss(At,Bt,Ct,Dt);
|
|
%figure();pzplot(ss_t)
|
|
ss_tz=c2d(ss_t,Ts);
|
|
%figure();pzplot(ss_tz)
|
|
[Atz,Btz,Ctz,Dtz]=ssdata(ss_tz);
|
|
|
|
|
|
[Apz,Bpz,Cpz,Dpz]=ssdata(c2d(ss(Ap,Bp,Cp,Dp),Ts));
|
|
[Amz,Bmz,Cmz,Dmz]=ssdata(c2d(ss(Am,Bm,Cm,Dm),Ts));
|
|
|
|
|
|
Ao=Am-L*Cm;
|
|
Bo=[Bm L];
|
|
Co=K;
|
|
Do=zeros(size(Co,1),size(Bo,2));
|
|
|
|
[Aoz,Boz,Coz,Doz]=ssdata(c2d(ss(Ao,Bo,Co,Do),Ts));
|
|
|
|
|
|
%state space controller
|
|
ssc=struct();
|
|
for k=["Ts","At","Bt","Ct","Dt","Atz","Btz","Ctz","Dtz","Ap","Bp","Cp","Dp","Am","Bm","Cm","Dm","Ao","Bo","Co","Do","Apz","Bpz","Cpz","Dpz","Aoz","Boz","Coz","Doz","V","K","L"]
|
|
ssc=setfield(ssc,k,eval(k));
|
|
end
|
|
mdlName='testObserverSim';
|
|
open(mdlName);
|
|
|
|
|
|
|
|
end
|