function [ssc]=StateSpaceControlDesign(mot,motid) % !!! first it need to run: [mot1,mot2]=identifyFxFyStage() tobuild a motor object !!! % % builds a state space controller designed for the plant. % shows step answers of open and closed loop, also for the observer controller and the final discrete observer % % finally it opens a simulink observer file for testing %References: %http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlStateSpace %space state controller: % web(fullfile(docroot, 'simulink/examples.html')) % web(fullfile(docroot, 'simulink/examples/inverted-pendulum-with-animation.html')) % web(fullfile(docroot, 'simulink/examples/double-spring-mass-system.html')) % % https://www.youtube.com/watch?v=Lax3etc837U ss_ol=mot.ss; ss_ol.Name='open loop'; %sys=ss(sys.A,sys.B,sys.C(3,:),0); % this would reduce the outputs to position only figure();h=bodeplot(ss_ol); setoptions(h,'IOGrouping','all') A=ss_ol.A; B=ss_ol.B; C=ss_ol.C; D=ss_ol.D; P=ctrb(A,B); if rank(A)==rank(P) disp('sys controlable') else disp('sys not controlable') end Q=obsv(A,C); if rank(A)==rank(Q) disp('sys observable') else disp('sys not observable') end % step answer on open loop: t = 0:1E-4:.5; u = ones(size(t)); x0 = zeros(1,length(ss_ol.A)); [y,t,x] = lsim(ss_ol,u,t,x0); figure();plot(t,y);title('step on open loop'); poles = eig(A); w0=abs(poles); ang=angle(-poles); %------------------- %p=w0.*exp(j.*ang) % *** space state controller *** % %place poles for the controller feedback if motid==1 %2500rad/s = 397Hz -> locate poles here p1=-3300+2800i; p2=-2700+500i; p3=-2500+10i; %p1=-3300+2800i; %p2=-1500+500i; %p3=-1200+10i; P=[p1 p1' p2 p2' p3 p3']; else %2500rad/s = 397Hz -> locate poles here p1=-3300+2800i; p2=-1900+130i; p3=-2900+80i; p4=-2300+450i; p5=-2000+20i; p6=-1500+10i; %p1=-3300+2800i; %p2=-1500+500i; %p3=-1200+10i; P=[p1 p1' p2 p2' p3 p3'];% p4 p4' p5 p5' p6 p6']; end K = place(A,B,P); %K = acker(A,B,P); V=-1./(C*(A-B*K)^-1*B); %(from Lineare Regelsysteme2 (Glattfelder) page:173 ) %Nbar(2)=1; %the voltage stuff is crap for now if length(V)>1 V=V(3); % only the position scaling needed end % step answer on closed loop with space state controller: t = 0:1E-4:.5; ss_cl = ss(A-B*K,B*V,C,0,'Name','space state controller','InputName',mot.ss.InputName,'OutputName',mot.ss.OutputName); [y,t,x]=lsim(ss_cl,V*u,t,x0); figure();plot(t,y);title('step on closed loop'); % *** observer controller *** % %observer poles-> 5 times farther left than system poles if motid==1 op1=(p1*5); op2=(p2*5); op3=(p3*5); OP=[op1 op1' op2 op2' op3 op3']; else op1=(p1*2); op2=(p2*2); op3=(p3*2); op4=(p4*2); op5=(p5*2); op6=(p6*2); OP=[op1 op1' op2 op2' op3 op3'];% op4 op4' op5 op5' op6 op6']; end L=place(A',C',OP)'; %L=acker(A',C',OP)'; At = [ A-B*K B*K zeros(size(A)) A-L*C ]; Bt = [ B*V zeros(size(B)) ]; Ct = [ C zeros(size(C)) ]; % step answer on closed loop with observer controller: ss_o = ss(At,Bt,Ct,0,'Name','observer controller','InputName',{'desPos'},'OutputName',mot.ss.OutputName); figure();lsim(ss_o,ones(size(t)),t,[x0 x0]);title('step on closed loop with observer'); % *** disctrete observer controller *** % Ts=1/5000; % 5kHz ss_od = c2d(ss_o,Ts); ss_od .Name='discrete obsvr ctrl'; % step answer on closed loop with disctrete observer controller: t = 0:Ts:.05; figure();lsim(ss_od ,ones(size(t)),t,[x0 x0]);title('step on closed loop with observer discrete'); %plot all bode diagrams of desPos->actPos figure(); h=bodeplot(ss_cl(3),ss_o(3),ss_od(3)); setoptions(h,'FreqUnits','Hz','Grid','on');legend('location','sw'); figure(); h=pzplot(ss_cl(3),ss_o(3),ss_od(3)); setoptions(h,'FreqUnits','Hz','Grid','on');legend('location','sw'); %calculate matrices for the simulink system Ao=A-L*C; Bo=[B L]; Co=K; Do=zeros(size(Co,1),size(Bo,2)); mdlName='observer'; open(mdlName); %state space controller ssc=struct(); for k=["Ts","A","B","C","D","Ao","Bo","Co","Do","V","K","L","ss_cl","ss_o","ss_od"] ssc=setfield(ssc,k,eval(k)); end end %code snipplets from an example on youtube (see reference at top) function SCRATCH() A = [ 0 1 0 980 0 -2.8 0 0 -100 ]; B = [ 0 0 100 ]; C = [ 1 0 0 ]; poles = eig(A) t = 0:0.01:2; u = zeros(size(t)); x0 = [0.01 0 0]; sys = ss(A,B,C,0); [y,t,x] = lsim(sys,u,t,x0); plot(t,y) title('Open-Loop Response to Non-Zero Initial Condition') xlabel('Time (sec)') ylabel('Ball Position (m)') p1 = -10 + 10i; p2 = -10 - 10i; p3 = -50; K = place(A,B,[p1 p2 p3]); sys_cl = ss(A-B*K,B,C,0); lsim(sys_cl,u,t,x0); xlabel('Time (sec)') ylabel('Ball Position (m)') p1 = -20 + 20i; p2 = -20 - 20i; p3 = -100; K = place(A,B,[p1 p2 p3]); sys_cl = ss(A-B*K,B,C,0); lsim(sys_cl,u,t,x0); xlabel('Time (sec)') ylabel('Ball Position (m)') t = 0:0.01:2; u = 0.001*ones(size(t)); sys_cl = ss(A-B*K,B,C,0); lsim(sys_cl,u,t); xlabel('Time (sec)') ylabel('Ball Position (m)') axis([0 2 -4E-6 0]) Nbar = rscale(sys,K) lsim(sys_cl,Nbar*u,t) title('Linear Simulation Results (with Nbar)') xlabel('Time (sec)') ylabel('Ball Position (m)') axis([0 2 0 1.2*10^-3]) end