function [mot1,mot2]=identifyFxFyStage() %loads recorded data of the current step and bode diagrams of the stages then plots the bode diagrams and identifies %the current step transfer function % %finally it builds a ss-Model of the stage with: % % u +-----------+ y %iqCmd------->|1 1|-------> iqMeas % | 2|-------> iqVolts % | 3|-------> actPos % +-----------+ % % the returned motor objects mot1 and mot2 contains: % % w,mag,phase : (gathered data with Python) % meas : a MATLAB idfrd model with data w,mag,phase % mdl : a structure with the python numerators and denominators for the transfer functions % tfc,tf_mdl : various transfer functions % ssPlt : the final continous state space model of the plant (not observable, not controlable) % ssMdl : the simplified continous state space model for the observer (observable, controlable) % % The used data files (generated from Python) are: % (located for now in: /home/zamofing_t/Documents/prj/SwissFEL/epics_ioc_modules/ESB_MX/python/MXTuning/18_10_02/ ) % - curr_step[1|2].mat % - full_bode_mot[1|2].mat % - model[1|2].mat %References: %create ss from tf MIMO: %https://ch.mathworks.com/matlabcentral/answers/37152-how-to-convert-tf2ss-for-mimo-system %http://ch.mathworks.com/help/control/ug/conversion-between-model-types.html#f3-1039600 %https://ch.mathworks.com/help/control/ref/append.html function obj=loadData(path,motid) obj=struct(); f=load(strcat(path,sprintf('curr_step%d.mat',motid))); obj.currstep=f; %prepend sone zeros to stable system identification obj.currstep=iddata([zeros(10,1); obj.currstep.data(:,2)],[zeros(10,1); obj.currstep.data(:,3)],50E-6); f=load(strcat(path,sprintf('full_bode_mot%d.mat',motid))); obj.w=f.frq*2*pi; %convert from Hz to rad/s if motid==2 f.db_mag(1:224)=f.db_mag(225); % reset bad values at low frequencies end obj.mag=10.^(f.db_mag/20); %mag not in dB obj.phase=f.deg_phase*pi/180; %phase in rad response = obj.mag.*exp(1j*obj.phase); obj.meas= idfrd(response,obj.w,0); fMdl=load(strcat(path,sprintf('model%d.mat',motid))); obj.mdl=fMdl; end function tfc=currstep(obj) opt=tfestOptions; opt.Display='off'; tfc = tfest(obj.currstep, 2, 0,opt); s=str2ndOrd(tfc); t=(0:199)*50E-6; [y,t]=step(tfc,t); figure(); subplot(1,2,1); plot(t*1000,obj.currstep.OutputData(11:210),'b',t*1000,y*1000,'r'); xlabel('ms') ylabel('curr\_bits') grid on legend('real signal','model','Location','southeast') title(s); subplot(1,2,2); h=bodeplot(tfc,'r'); setoptions(h,'FreqUnits','Hz','Grid','on'); end function s=str2ndOrd(tf) den=tf.Denominator; num=tf.Numerator; k=num(1)/den(3); w0=sqrt(den(3)); damp=den(2)/2/w0; s=sprintf('k:%g w0:%g damp:%g',k,w0,damp); end function chkCtrlObsv(ss,s) P=ctrb(ss.A,ss.B); if rank(ss.A)==rank(P) ct='';%controlable else ct='not ';%not controlable end Q=obsv(ss.A,ss.C); if rank(ss.A)==rank(Q) ob='';%sys observable else ob='not ';%not observable end disp([s,' is ',ct,'controlable and ',ob,'observable.']); end function mot=fyStage() motid=1; mot=loadData('/home/zamofing_t/Documents/prj/SwissFEL/epics_ioc_modules/ESB_MX/python/MXTuning/18_10_02/',motid); mot.id=motid; mot.tfc=currstep(mot); opt=tfestOptions; opt.Display='off'; opt.initializeMethod='iv'; opt.WeightingFilter=[1,5;30,670]*(2*pi); % Hz->rad/s conversion figure(); mot.tf2_0 = tfest(mot.meas, 2, 0, opt);disp(str2ndOrd(mot.tf2_0)); mot.tf_mdl=idtf(mot.mdl.num,mot.mdl.den); %ss([g1 mot.tf_mdl],'minimal') this doesn't work as expected numc=myNorm(mot.mdl.numc); denc=myNorm(mot.mdl.denc); num1=myNorm(mot.mdl.num1); den1=myNorm(mot.mdl.den1); num2=myNorm(mot.mdl.num2); %resonance den2=myNorm(mot.mdl.den2); g1=tf(numc,denc); % iqCmd->iqMeas s1=ss(g1); s1.C=[s1.C; 1E5* 2.4E-3 1E-3*s1.C(2)*8.8]; % add output iqVolts: iqVolts= i_meas*R+i_meas'*L 2.4mH 8.8Ohm (took random scaling values) %tf(s1) % display all transfer functions num=conv(num1,num2);%num=1; den=conv(den1,den2);%den=[1 0 0]; g2=tf(num,den); %iqMeas->ActPos s2=ss(g2); s3=append(s1,s2); s3.A(3,2)=s3.C(1,2)*s3.B(3,2); mot.ssPlt=ss(s3.A,s3.B(:,1),s3.C,0); % single input, remove input iqMeas mot.ssPlt.InputName{1}='iqCmd'; mot.ssPlt.OutputName{1}='iqMeas'; mot.ssPlt.OutputName{2}='iqVolts'; mot.ssPlt.OutputName{3}='actPos'; chkCtrlObsv(mot.ssPlt,'ssPlt fyStage'); % u +-----------+ y %iqCmd------->|1 1|-------> iqMeas % | 2|-------> iqVolts % | 3|-------> actPos % +-----------+ %simplified model without resonance g2=tf(num1,den1); %iqMeas->ActPos without resonance frequencies s2=ss(g2); s3=append(s1,s2); s3.A(3,2)=s3.C(1,2)*s3.B(3,2); mot.ssMdl=ss(s3.A,s3.B(:,1),s3.C,0); % single input, remove input iqMeas mot.ssMdl.InputName{1}='iqCmd'; mot.ssMdl.OutputName{1}='iqMeas'; mot.ssMdl.OutputName{2}='iqVolts'; mot.ssMdl.OutputName{3}='actPos'; chkCtrlObsv(mot.ssMdl,'ssMdl fyStage'); %filter in front of plant to suppress resonances (inverse of reonance) den=num2;%num=1; num=den2;%den=[1 0 0]; mot.prefilt=tf(num,den); %h=bodeplot(mot.meas,'r',mot.tf4_2,'b',mot.tf6_4,'g'); %h=bodeplot(mot.meas,'r',mot.tf2_0,'b',mot.tf_mdl,'g',mot.w); t1=tf(mot.ssPlt);t2=tf(mot.ssMdl);h=bodeplot(mot.meas,'r',t1(3,1),'g',t2(3,1),'b',mot.w); setoptions(h,'FreqUnits','Hz','Grid','on'); end function y=myNorm(y) %normalizes num and den by factor 1000 %y.*10.^(3*(length(y):-1:1)) end function mot=fxStage() motid=2; mot=loadData('/home/zamofing_t/Documents/prj/SwissFEL/epics_ioc_modules/ESB_MX/python/MXTuning/18_10_02/',motid); mot.id=motid; currstep(mot); opt=tfestOptions; opt.Display='off'; opt.initializeMethod='iv'; opt.WeightingFilter=[1,4;10,670]*(2*pi); % Hz->rad/s conversion figure(); mot.tf2_0 = tfest(mot.meas, 2, 0, opt);disp(str2ndOrd(mot.tf2_0)); mot.tf13_9 = tfest(mot.meas, 13, 9, opt); mot.tf_mdl=idtf(mot.mdl.num,mot.mdl.den); numc=myNorm(mot.mdl.numc); denc=myNorm(mot.mdl.denc); num1=myNorm(mot.mdl.num1); den1=myNorm(mot.mdl.den1); num2=myNorm(mot.mdl.num2); %resonance den2=myNorm(mot.mdl.den2); num3=myNorm(mot.mdl.num3); %resonance den3=myNorm(mot.mdl.den3); num4=myNorm(mot.mdl.num4); %resonance den4=myNorm(mot.mdl.den4); num5=myNorm(mot.mdl.num5); %resonance den5=myNorm(mot.mdl.den5); %num=myNorm(mot.mdl.num); %den=myNorm(mot.mdl.den); g1=tf(numc,denc); % iqCmd->iqMeas s1=ss(g1); s1.C=[s1.C; 1E5* 2.4E-3 1E-3*s1.C(2)*8.8]; % add output iqVolts: iqVolts= i_meas*R+i_meas'*L 2.4mH 8.8Ohm (took random scaling values) %tf(s1) % display all transfer functions num=conv(conv(conv(conv(num1,num2),num3),num4),num5);%num=1; den=conv(conv(conv(conv(den1,den2),den3),den4),den5);%den=[1 0 0]; g2=tf(num,den); %iqMeas->ActPos s2=ss(g2); s3=append(s1,s2); %t_=tf(s3); %bode(g2);figure;bode(t_(3,2)); %connect iqMeas from s1 to iqMeas of s2 s3.A(3,2)=s3.C(1,2)*s3.B(3,2); s3.A(3,2)=s3.C(1,2)*s3.B(3,2); mot.ssPlt=ss(s3.A,s3.B(:,1),s3.C,0); % single input, remove input iqMeas mot.ssPlt.InputName{1}='iqCmd'; mot.ssPlt.OutputName{1}='iqMeas'; mot.ssPlt.OutputName{2}='iqVolts'; mot.ssPlt.OutputName{3}='actPos' ; chkCtrlObsv(mot.ssPlt,'ssPlt fxStage'); % u +-----------+ y %iqCmd------->|1 1|-------> iqMeas % | 2|-------> iqVolts % | 3|-------> actPos % +-----------+ %simplified model without resonance g2=tf(num1,den1); %iqMeas->ActPos without resonance frequencies s2=ss(g2); s3=append(s1,s2); s3.A(3,2)=s3.C(1,2)*s3.B(3,2); mot.ssMdl=ss(s3.A,s3.B(:,1),s3.C,0); % single input, remove input iqMeas mot.ssMdl.InputName=mot.ssPlt.InputName; mot.ssMdl.OutputName=mot.ssPlt.OutputName; chkCtrlObsv(mot.ssMdl,'ssMdl fxStage'); %filter in front of plant to suppress resonances (inverse of reonance) den=conv(conv(conv(num2,num3),num4),num5);%num=1; num=conv(conv(conv(den2,den3),den4),den5);%den=[1 0 0]; mot.prefilt=tf(num,den); %h=bodeplot(mot.meas,'r',mot.tf4_2,'b',mot.tf6_4,'g',mot.tf13_9,'m',mot.tf_py,'b'); %h=bodeplot(mot.meas,'r',mot.tf2_0,'b',mot.tf_mdl,'g',mot.w); t1=tf(mot.ssPlt);t2=tf(mot.ssMdl);h=bodeplot(mot.meas,'r',t1(3,1),'g',t2(3,1),'b',mot.w); setoptions(h,'FreqUnits','Hz','Grid','on'); %controlSystemDesigner('bode',1,mot.tf_py); % <<<<<<<<< This opens a transferfiûnction that can be edited end close all mot1=fyStage(); mot2=fxStage(); end