https://de.wikipedia.org/wiki/Chirp # amp, minFrq, maxFrq, tSec = (10, 10, 300, 30) import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt x=np.arange(1,300000) y=10*np.sin(31.415926535897931*( pow(1.058324104020218,(x*0.000199996614513)) -1) /np.log(1.058324104020218)) plt.show() plt.plot(x,y) plt.show() y=amp*sin( a* (b**(x*c))-1) / log(d) ) =amp*sin( a/log(d)* (b**(x*c))-1) ) 0.000199996614513=samplingrate in sec. (gatherPeriod==1?) 31.415926535897931 = pi*10 =? 2*pi*f0 1.058324104020218 = k x*0.000199996614513 =t 1.058324104020218**60 = 30 sin( 2*pi*f0/ln(k)*(k**t-1) ) f(t)=f0*k**t = f0*e**(t*ln(k)) k**t=30 (from 10 to 300 -> 300/10=30) log(k**t)=log(30) log(k)*t=log(30) log(k)=log(30)*(1/t) log(k)=log(30**(1/t)) k=30**(1/t) 30**(1/60.) = 1.0583241040202176 ----------------------------------------------------------------- figure(); h=pzplot(ssc.ss_cl(3),ssc.ss_o(3),ssc.ss_od(3)); setoptions(h,'FreqUnits','Hz','Grid','on');legend('location','sw'); %figure();bode(ssc.ss_o(3)); %figure();tf=tf(ssc.ss_o) pzplot(tf(3)); h=bodeplot(ssc.ss_cl(3),ssc.ss_o(3),ssc.ss_od(3)); setoptions(h,'FreqUnits','Hz','Grid','on'); h=pzplot(ssc.ss_cl(3),ssc.ss_o(3),ssc.ss_od(3)); setoptions(h,'FreqUnits','Hz','Grid','on'); h=bodeplot(ssc.ss_cl(3),ssc.ss_o(3),ssc.ss_od(3)); setoptions(h,'FreqUnits','Hz','Grid','on'); getoptions(h) continous to discrete web(fullfile(docroot, 'control/ref/c2d.html')) h = tf(10,[1 3 10],'IODelay',0.25); hd = c2d(h,0.1) function f=SCRATCH() open('stage_closed_loop.slx') [m1,m2]=identifyFxFyStage(); controlSystemDesigner(1,m2.tf_py); % <<<<<<<<< This opens a transferfiûnction that can be edited %identification toolbox systemIdentification %opt=tfestOptions('Display','off'); %opt=tfestOptions('Display','on','initializeMethod','svf'); %opt=tfestOptions('Display','on','initializeMethod','iv','WeightingFilter',[]); %opt=tfestOptions('Display','on','initializeMethod','iv','WeightingFilter',[1,5;20,570]); %tf1 = tfest(mot1frq, 6, 4, opt); % Model refinement % Options = tf1.Report.OptionsUsed; % Options.WeightingFilter = 'prediction'; % tf1_1 = pem(mot1frq, tf1, Options) bodeplot(mot1frq,tf1) mag,phase=bode(tf1,frq) figure(1) subplot(211) bodeplot(tf1) Opt = n4sidOptions('N4Horizon',[15 15 15]); n4s3 = n4sid(mot1frq, 3, Opt) %tf([1 2],[1 0 10]) %specifies the transfer function (s+2)/(s^2+10) while sys=tf([1],[1,0,0]) bode(sys) step(sys) sys=tf([1],[1,-1,2]) %instable sys=tf([1],[1,1,2]) %stable %0dB at 12 Hz=12*2*pi rad/s =75.4=k^2 -> k=8.6833 sys=tf([10],[1,0,0]) %1/s^2 -> 0dB at 1Hz -40dB/decade %10=+20dB sys=tf([1],[1,0,2]) %not damped constant sine after step sys=zpk([],[1,0,0],100) %stable sys=zpk([],[-10,-10],100) %parker stage 1 %!encoder_sim(enc=1,tbl=9,mot=9,posSf=13000./2048) %!encoder_inc(enc=1,tbl=1,mot=1,posSf=13000./650000) %!motor_servo(mot=1,ctrl='ServoCtrl',Kp=25,Kvfb=400,Ki=0.02,Kvff=350,Kaff=5000,MaxInt=1000) %!motor(mot=1,dirCur=0,contCur=800,peakCur=2400,timeAtPeak=1,IiGain=5,IpfGain=8,IpbGain=8,JogSpeed=10.,numPhase=3,invDir=True,servo=None,PhasePosSf=1./81250,PhaseFindingDac=100,PhaseFindingTime=50,SlipGain=0,AdvGain=0,PwmSf=10000,FatalFeLimit=200,WarnFeLimit=100,InPosBand=2,homing='enc-index') Ts=2E-4 % discrete sample time (servo period) Kp=25,Kvfb=400,Ki=0.02,Kvff=350,Kaff=5000,MaxInt=1000 Kp=25,Kvfb=0,Ki=0,Kvff=0,Kaff=0,MaxInt=0 num=7.32 den=[5.995e-04 4.897e-02 1.] open('stage_closed_loop.slx') %sim('stage_closed_loop.slx') sys=tf(num,den) bode(sys) G = tf(1.5,[1 14 40.02]); controlSystemDesigner('bode',sys); controlSystemDesigner linearSystemAnalyzer load ltiexamples linearSystemAnalyzer(sys_dc) controlSystemDesigner('bode',sys); controlSystemDesigner(1,sys); % <<<<<<<<< This opens a transferfiûnction that can be edited 1 num=[8.32795069e-11, 1.04317228e-08, 6.68431323e-05, 3.31861324e-03, 7.32824533e+00]; den=[5.26156641e-18, 1.12897840e-14, 7.67853031e-12, 1.03201301e-08, 2.05154780e-06, 1.34279894e-03, 7.19229912e-02, 1.00000000e+00]; mot2=tf(num,den); controlSystemDesigner('bode',mot2); end m1=10; d1=10; k1=0; m2=.3; d2=0.15; k2=100; m3=1.2; d3=.04; k3=10; %k2 determines resonance frequency k2 higher -> resfrq higher %d2 determines the damping d2=0 no damping d2=10 strong damping %m2 determines how much energy is in the resonance %m1 is big compared to the other masses %d1 is the speed dependant friction %k1 can be set to 0, because these is no position for no force %-> but this means for 1/s^2 the system is not observable any more ks=k1+k2+k3; ds=d1+d2+d3; A=[ 0 1 0 0 0 0 ; -ks/m1 -ds/m1 k2/m1 d2/m1 k3/m1 d3/m1 ; 0 0 0 1 0 0 ; k2/m2 d2/m2 -k2/m2 -d2/m2 0 0 ; 0 0 0 0 0 1 ; k3/m1 d3/m1 0 0 -k3/m3 -d3/m3 ]; B=[ 0 1 0 0 0 0]'; C=[ 1 0 0 0 0 0]; D=[0]; ss1=ss(A,B,C,D); bodeplot(ss1,{.1,1000}); tf(ss1) %simplified no resonance A=[ 0 1 ; -k1/m1 -d1/m1 ]; B=[ 0 1 ]'; C=[ 1 0 ]; D=[0]; ss1=ss(A,B,C,D); bodeplot(ss1,{.1,1000}); tf(ss1) chkCtrlObsv(ss1,'') %but with k1=0 or d1=0 the system is neither controllable nor observable %-> the p = eig(A); disp(p); K = place(A,B,[-5 -10]);