function [pb]=DeltaTauParam(mot,mdl,param) % !!! first it need to run: [mot1,mot2]=identifyFxFyStage() tobuild a motor object !!! % %loads the current (11.10.2018) controller settings of the %Powerbrick and opens its simulink file %the returned variable pb contains varous parameters: % Kp,Kvfb,Ki,Kvff,Kaff,MaxInt,mot_num,mot_den,Ts,MaxDac,MaxPosErr,A,B,C,D pb=struct(... 'Ts', 2E-4, ... % 0.2ms=5kHz 'MaxDac' ,2011.968, ... 'MaxPosErr', 10000, ... 'A',tf(1),'B',tf(1),'C_D',tf(1),'E',tf(1),'F',tf(1), ... 'Kafb',0, ... 'V',0,'Kfb',0); desc=sprintf('mot:%d mdl:',mot.id); switch mdl case 1 pb.ss_plt=mot.ss_plt;desc=desc+"plt"; pb.sel={3,[3]}; case 2 pb.ss_plt=mot.ss_plt0;desc=desc+"plt0"; pb.sel={3,[3]}; case 3 pb.ss_plt=mot.ss_c1;desc=desc+"c1"; pb.sel={3,[3]}; case 4 pb.ss_plt=mot.ss_d1;desc=desc+"d1"; pb.sel={3,[3]}; case 5 pb.ss_plt=mot.ss_1;desc=desc+"1"; pb.sel={2,[2]}; case 6 pb.ss_plt=mot.ss_p;desc=desc+"p"; pb.sel={2,[2]}; case 7 pb.ss_plt=mot.ss_q;desc=desc+"q"; pb.sel={2,[2]}; case 8 pb.ss_plt=mot.ss_cq;desc=desc+"cq"; pb.sel={3,[3]}; case 9 pb.ss_plt=mot.ss_cqr;desc=desc+"cqr"; pb.sel={3,[3]}; case 10 pb.ss_plt=mot.ss_dq;desc=desc+"dq"; pb.sel={3,[3]}; end desc=desc+" param:"; curr2acc=mot.mdl.numq; %curr2acc curr_bit to acceleration: zero dB of simplified motion pb.curr2acc=curr2acc; if mot.id==1 %!motor_servo(mot=1,ctrl='ServoCtrl',Kp=25,Kvfb=400,Ki=0.02,Kvff=350,Kaff=5000,MaxInt=1000) %!motor(mot=1,dirCur=0,contCur=800,peakCur=2400,timeAtPeak=1,IiGain=5,IpfGain=8,IpbGain=8,JogSpeed=10.,numPhase=3,invDir=True,servo=None,PhasePosSf=1./81250,PhaseFindingDac=100,PhaseFindingTime=50,SlipGain=0,AdvGain=0,PwmSf=10000,FatalFeLimit=200,WarnFeLimit=100,InPosBand=2,homing='enc-index') switch param case 0 %scratch desc=desc+"scratch"; pl=[-800+150i -800-150i -2513]; [Am,Bm,Cm,Dm]=ssdata(mot.ss_dq); K = place(Am,Bm,pl); V=-1./(Cm*(Am-Bm*K)^-1*Bm); %(from Lineare Regelsysteme2 (Glattfelder) page:173 ) V=V(end); Kfb=K*(Cm^-1); pb.V=V; pb.Kfb=Kfb; pb.Kp=V; %pb.B=tf(Kfb(3)/V); pb.Kvfb=Kfb(2)/pb.Ts; pb.Kvff=0;%1*pb.Kvfb; pb.Kafb=Kfb(1)/(curr2acc*(pb.Ts^2)); pb.Kaff=0;%1/(curr2acc*(pb.Ts^2))+pb.Kafb; pb.Ki=0.001; pb.MaxInt=1000; %https://ch.mathworks.com/help/control/ref/tf.html %feed forward filter attenuating high frequencies %fs=1/pb.Ts;%[n,d] = butter(6,fc/(fs/2)); fc=200;%Hz [num,den] = butter(2,fc*pb.Ts*2,'low'); Fz2=tf(num,den,pb.Ts); Fz=tf([1 0 0],den/sum(num),pb.Ts); %h=bodeplot(Fz,Fz2);setoptions(h,'FreqUnits','Hz','Grid','on'); %pb.F=Fz; fc=800;%Hz [num,den] = butter(2,fc*pb.Ts*2,'low'); Ez=tf([1 0 0],den/sum(num),pb.Ts); Bz=tf([.5 .5],[1 0],pb.Ts) pb.E=Ez; %less noise sensitive on feedback pb.B=Bz; %less noise sensitive on feedback aa=.9; k=1.8; T=1/200; C_D=tf(k*[T 1],[T*aa 1]); C_Dz=c2d(C_D,pb.Ts) %h=bodeplot(C_D,C_Dz);setoptions(h,'FreqUnits','Hz','Grid','on'); pb.C_D=C_Dz; display(pb.B) display(pb.E) display(pb.C_D) display(pb.F) Fz=tf([1 0 0],den/sum(num),pb.Ts); fprintf('Kp:%f Kvfb:%f\n',pb.Kp,pb.Kvfb); case 1 %origin parameters desc=desc+"orig"; pb.Kp=25;pb.Kvfb=400;pb.Ki=0.02;pb.Kvff=350;pb.Kaff=5000;pb.MaxInt=1000; case 2%enhances first step desc=desc+"opt1"; pb.Kp=25;pb.Kvfb=350;pb.Ki=0.02;pb.Kvff=350;pb.Kaff=1/(curr2acc*(pb.Ts^2));pb.MaxInt=1000; case 3 %pole placement on ss_dq (simplified motion, no current loop) desc=desc+"pp ss\_q"; pl=[-1400 -1440]; pl=[-300+350i -300-350i]; [Am,Bm,Cm,Dm]=ssdata(mot.ss_q); K = place(Am,Bm,pl); V=-1./(Cm*(Am-Bm*K)^-1*Bm); %(from Lineare Regelsysteme2 (Glattfelder) page:173 ) V=V(end); Kfb=K*(Cm^-1); pb.V=V; pb.Kfb=Kfb; pb.Kp=V; pb.B=tf(Kfb(2)/V); pb.Kvfb=Kfb(1)/pb.Ts; pb.Kvff=pb.Kvfb; pb.Kaff=1/(curr2acc*(pb.Ts^2)); pb.Ki=0.01; % lower pb.MaxInt=1000; display(pb.B) fprintf('Kp:%f Kvfb:%f\n',pb.Kp,pb.Kvfb); case 4 %pole placement on ss_dq (simplified motion, simplified current loop) desc=desc+"pp ss\_dq"; pl=[-300+350i -300-350i -2513]; [Am,Bm,Cm,Dm]=ssdata(mot.ss_dq); K = place(Am,Bm,pl); V=-1./(Cm*(Am-Bm*K)^-1*Bm); %(from Lineare Regelsysteme2 (Glattfelder) page:173 ) V=V(end); Kfb=K*(Cm^-1); pb.V=V; pb.Kfb=Kfb; pb.Kp=V; pb.B=tf(Kfb(3)/V); pb.Kvfb=Kfb(2)/pb.Ts; pb.Kvff=1*pb.Kvfb; pb.Kafb=Kfb(1)/(curr2acc*(pb.Ts^2)); pb.Kaff=1*1/(curr2acc*(pb.Ts^2))+pb.Kafb; pb.Ki=0.01; pb.MaxInt=1000; display(pb.B) fprintf('Kp:%f Kvfb:%f Kafb:%f\n',pb.Kp,pb.Kvfb,pb.Kafb); case 5 % optimize higher gain and filter desc=desc+"opt5"; pl=[-800+150i -800-150i -2513]; [Am,Bm,Cm,Dm]=ssdata(mot.ss_dq); K = place(Am,Bm,pl); V=-1./(Cm*(Am-Bm*K)^-1*Bm); %(from Lineare Regelsysteme2 (Glattfelder) page:173 ) V=V(end); Kfb=K*(Cm^-1); pb.V=V; pb.Kfb=Kfb; pb.Kp=V; %pb.B=tf(Kfb(3)/V); pb.Kvfb=Kfb(2)/pb.Ts; pb.Kvff=1*pb.Kvfb; pb.Kafb=Kfb(1)/(curr2acc*(pb.Ts^2)); pb.Kaff=1/(curr2acc*(pb.Ts^2))+pb.Kafb; pb.Ki=0.001; pb.MaxInt=1000; %https://ch.mathworks.com/help/control/ref/tf.html %feed forward filter attenuating high frequencies %fs=1/pb.Ts;%[n,d] = butter(6,fc/(fs/2)); fc=200;%Hz [num,den] = butter(2,fc*pb.Ts*2,'low'); Fz2=tf(num,den,pb.Ts); Fz=tf([1 0 0],den/sum(num),pb.Ts); %h=bodeplot(Fz,Fz2);setoptions(h,'FreqUnits','Hz','Grid','on'); fc=800;%Hz [num,den] = butter(2,fc*pb.Ts*2,'low'); Ez=tf([1 0 0],den/sum(num),pb.Ts); Bz=tf([.5 .5],[1 0],pb.Ts) % fast simple lowpass: -3dB at 1250Hz %pb.F=Fz; %filtering does not help in the domain below 50Hz. it attenuates at high frq. but makes things worse at low frq. pb.E=Ez; %less noise sensitive on feedback pb.B=Bz; %less noise sensitive on feedback display(pb.B) display(pb.F) Fz=tf([1 0 0],den/sum(num),pb.Ts); fprintf('Kp:%f Kvfb:%f\n',pb.Kp,pb.Kvfb); case 6 desc=desc+"opt6"; pl=[-800+150i -800-150i -2513]; [Am,Bm,Cm,Dm]=ssdata(mot.ss_dq); K = place(Am,Bm,pl); V=-1./(Cm*(Am-Bm*K)^-1*Bm); %(from Lineare Regelsysteme2 (Glattfelder) page:173 ) V=V(end); Kfb=K*(Cm^-1); pb.V=V; pb.Kfb=Kfb; pb.Kp=V; %pb.B=tf(Kfb(3)/V); pb.Kvfb=Kfb(2)/pb.Ts; pb.Kvff=1*pb.Kvfb; pb.Kafb=Kfb(1)/(curr2acc*(pb.Ts^2)); pb.Kaff=1/(curr2acc*(pb.Ts^2))+pb.Kafb; pb.Ki=0.001; pb.MaxInt=1000; %https://ch.mathworks.com/help/control/ref/tf.html %feed forward filter attenuating high frequencies %fs=1/pb.Ts;%[n,d] = butter(6,fc/(fs/2)); fc=200;%Hz [num,den] = butter(2,fc*pb.Ts*2,'low'); Fz2=tf(num,den,pb.Ts); Fz=tf([1 0 0],den/sum(num),pb.Ts); %h=bodeplot(Fz,Fz2);setoptions(h,'FreqUnits','Hz','Grid','on'); %pb.F=Fz; fc=800;%Hz [num,den] = butter(2,fc*pb.Ts*2,'low'); Ez=tf([1 0 0],den/sum(num),pb.Ts); Bz=tf([.5 .5],[1 0],pb.Ts) pb.E=Ez; %less noise sensitive on feedback pb.B=Bz; %less noise sensitive on feedback aa=.9; k=1.8; T=1/200; C_D=tf(k*[T 1],[T*aa 1]); C_Dz=c2d(C_D,pb.Ts) %h=bodeplot(C_D,C_Dz);setoptions(h,'FreqUnits','Hz','Grid','on'); pb.C_D=C_Dz; display(pb.B) display(pb.E) display(pb.C_D) display(pb.F) Fz=tf([1 0 0],den/sum(num),pb.Ts); fprintf('Kp:%f Kvfb:%f\n',pb.Kp,pb.Kvfb); end %pb.Kp=0.1;pb.Kvfb=0;pb.Ki=0.00;pb.Kvff=0;pb.Kaff=1/(1.548e04*(pb.Ts^2));pb.MaxInt=1000; %filter [z^0 z^-1 ... z^-n]; %19.8Hz 0dB K=(19.8*2*np.pi)**2=15477.1 Ts=5kHz=.2ms %Kaff = 1/(Ts*Ts*K) = 1/((19.8*2*np.pi)**2/5000**2) = 1615.2877200403302 %Kfff=100 else %!motor_servo(mot=2,ctrl='ServoCtrl',Kp=22,Kvfb=350,Ki=0.02,Kvff=240,Kaff=1500,MaxInt=1000) %!motor(mot=2,dirCur=0,contCur=800,peakCur=2400,timeAtPeak=1,IiGain=5,IpfGain=8,IpbGain=8,JogSpeed=10.,numPhase=3,invDir=True,servo=None,PhasePosSf=1./81250,PhaseFindingDac=100,PhaseFindingTime=50,SlipGain=0,AdvGain=0,PwmSf=10000,FatalFeLimit=200,WarnFeLimit=100,InPosBand=2,homing='enc-index') switch param case 0 %scratch desc=desc+"scratch"; %pole(mot.ss_dq) pl=[-300+150i -300-150i -2513]; [Am,Bm,Cm,Dm]=ssdata(mot.ss_dq); K = place(Am,Bm,pl); V=-1./(Cm*(Am-Bm*K)^-1*Bm); %(from Lineare Regelsysteme2 (Glattfelder) page:173 ) V=V(end); Kfb=K*(Cm^-1); pb.V=V; pb.Kfb=Kfb; pb.Kp=V; %pb.B=tf(Kfb(3)/V); pb.Kvfb=Kfb(2)/pb.Ts; pb.Kvff=1*pb.Kvfb; pb.Kafb=0.1*Kfb(1)/(curr2acc*(pb.Ts^2)); pb.Kaff=1/(curr2acc*(pb.Ts^2))+pb.Kafb; pb.Ki=0.001; pb.MaxInt=1000; fc=800;%Hz [num,den] = butter(2,fc*pb.Ts*2,'low'); Ez=tf([1 0 0],den/sum(num),pb.Ts); %Az=tf([.1 .2 .7],[1 0 0],pb.Ts) %is similar to the phase at feed forward only %h=bodeplot(Az);setoptions(h,'FreqUnits','Hz','Grid','on'); %Bz=tf([.5 .5],[1 0],pb.Ts) %pb.E=Ez; %less noise sensitive on feedback %pb.B=Bz; %less noise sensitive on feedback fprintf('Kp:%f Kvfb:%f Kafb:%f\n',pb.Kp,pb.Kvfb,pb.Kafb); case 1 %origin parameters desc=desc+"orig"; pb.Kp=22;pb.Kvfb=350;pb.Ki=0.02;pb.Kvff=240;pb.Kaff=1500;pb.MaxInt=1000; case 2%enhances first step desc=desc+"opt1"; pb.Kp=22;pb.Kvfb=450;pb.Ki=0.02;pb.Kvff=450;pb.Kaff=4517;pb.MaxInt=1000; %pb.Kp=22;pb.Kvfb=350;pb.Ki=0.02;pb.Kvff=240;pb.Kaff=3500;pb.MaxInt=1000; case 3 %pole placement on ss_dq (simplified motion, no current loop) desc=desc+"pp ss\_q"; pl=[-300+100i -300-100i]; [Am,Bm,Cm,Dm]=ssdata(mot.ss_q); K = place(Am,Bm,pl); V=-1./(Cm*(Am-Bm*K)^-1*Bm); %(from Lineare Regelsysteme2 (Glattfelder) page:173 ) V=V(end); Kfb=K*(Cm^-1); pb.V=V; pb.Kfb=Kfb; pb.Kp=V; pb.B=tf(Kfb(2)/V); pb.Kvfb=Kfb(1)/pb.Ts; pb.Kvff=pb.Kvfb; pb.Kaff=1/(curr2acc*(pb.Ts^2)); pb.Ki=0.01; % lower pb.MaxInt=1000; display(pb.B) fprintf('Kp:%f Kvfb:%f\n',pb.Kp,pb.Kvfb); case 4 %pole placement on ss_dq (simplified motion, simplified current loop) desc=desc+"pp ss\_dq"; %pole(mot.ss_dq) pl=[-300+150i -300-150i -2513]; [Am,Bm,Cm,Dm]=ssdata(mot.ss_dq); K = place(Am,Bm,pl); V=-1./(Cm*(Am-Bm*K)^-1*Bm); %(from Lineare Regelsysteme2 (Glattfelder) page:173 ) V=V(end); Kfb=K*(Cm^-1); pb.V=V; pb.Kfb=Kfb; pb.Kp=V; pb.B=tf(Kfb(3)/V); pb.Kvfb=Kfb(2)/pb.Ts; pb.Kvff=1*pb.Kvfb; pb.Kafb=Kfb(1)/(curr2acc*(pb.Ts^2)); pb.Kaff=1*1/(curr2acc*(pb.Ts^2))+pb.Kafb; pb.Ki=0.01; pb.MaxInt=1000; display(pb.B) fprintf('Kp:%f Kvfb:%f Kafb:%f\n',pb.Kp,pb.Kvfb,pb.Kafb); end %11.84Hz 0dB K=(11.84*2*np.pi)**2=5534.3 Ts=5kHz=.2ms %Kaff = 1/(Ts*Ts*K) = 1/((11.84*2*np.pi)**2/5000**2) = 4517.278506241803 %Kfff=100 %pb.MaxInt=200 %200mA should be enought to fix static errors end pb.desc=desc; %mdlName='stage_closed_loop'; %open(mdlName) %sim(mdlName) end