matlab identification code

This commit is contained in:
2018-10-04 09:56:25 +02:00
parent 85364c9a59
commit fa00a1ef25
3 changed files with 294 additions and 1 deletions

98
matlab/Readme.md Normal file
View File

@@ -0,0 +1,98 @@
Matlab Simulink start
---------------------
```
[gfa-lc6-64 ~]
[-bash INSTBASE=/prod]$
cd /afs/psi.ch/user/z/zamofing_t/ESB-MX/
module load matlab/2018a
matlab&
or start directly: /afs/psi.ch/sys/psi.x86_64_slp6/Programming/matlab/2018a/bin/matlab&
this works also on my linux computers
```
Files overview
--------------
```
identifyFxFyStage.m: a transferfunction is optimized with the acquires bode data from: MXTuning.py --mode 4 (which generates: full_bode_mot[1|2].mat)
```
OLD STUFF
=========
Matlab Simulink up to 11.7.2018
-------------------------------
```
Open and run ESB_stage.m (takes very long to open simulink...)
// default frq: 20 kHz Phase, 5 kHz Servo, 6.25MHz AdcAmp
Values for current loop:
PwmSf-> User MAnual page 245
PwmSf=15134.8909 # =.95*16384. PMAC3-style DSPGATE3 ASIC is being used for the output, the counter moves between +/- 16384. PwmSf is typically set to 95% of 16384
scale = 1 for 2 phase motors
= cos(30)=0.866 for 3 phase motors
Amplifier specs (Power Brick LV User Manual.pdf p.19)
5A_rms continous current
15A_rms peak current
14 bit ADC resolution
2us PWM deadBand
33.85A Maximum ADC Current (corresponds to a DAC Value 32737 ==2^15)
Tested values from IDE:
3 Phase, 1A_rms -> MaxDac=1184.895 = np.sqrt(2)*np.sqrt(3)/2*32767/33.850
3 Phase, 1A_peak -> MaxDac=837.8478 = np.sqrt(3)/2*32767/33.850
A_peak=A_rms*sqrt(2)
np.sqrt(3)/2 because of 3 phase (the coil has not always current)
A_peak is used. (A_rms is more dangerous to burn the motor)
if not kw.has_key('IdCmd'):
kw['IdCmd'] = dirCur*scale
kw['MaxDac'] = peakCur*scale;
gpasciiCommander --host MOTTEST-CPPM-CRM0573 -i
$$$***
!common()
!encoder_inc(enc=1,tbl=9,mot=9)
!encoder_sim(enc=1)
!motor(mot=1,dirCur=200,JogSpeed=1024,invDir=False,InPosBand=1)
Defaut:
IiGain=.2
IpfGain=6
IpbGain=6
Current loop:
-> Monitor idMead, idVolts
idVolts: -32768..32,767 Value that goes to the PWM
out{constant} specifying the output magnitude as a percentage of
the maximum output parameter for the motor: Motor[x].MaxDac.
Motor[1].MaxDac=580.80603
#1out1
-> 1 % of 580.8 -> Motor[1].ServoOut=5.808
-> idVolts= 1500
-> idMeas = 155
https://ch.mathworks.com/de/products/simcontrol.html
https://ch.mathworks.com/help/slcontrol/ug/design-compensator-in-simulink-using-automated-pid-tuning.html#responsive_offcanvas
https://ch.mathworks.com/help/slcontrol/ug/analyze-designs-using-response-plots.html
https://ch.mathworks.com/help/control/ug/bode-diagram-design.html
https://ch.mathworks.com/help/control/ug/edit-compensator-dynamics.html
https://ch.mathworks.com/help/control/ug/root-locus-design.html
controlSystemDesigner(1,sys);
controlSystemDesigner('bode',sys);
```

189
matlab/identifyFxFyStage.m Normal file
View File

@@ -0,0 +1,189 @@
function [mot1,mot2]=identifyFxFyStage()
%sample idfrd
%f = logspace(-1,1,100);
%[mag,phase] = bode(idtf([1 .2],[1 2 1 1]),f);
%response = mag.*exp(1j*phase*pi/180);
%m = idfrd(response,f,0.08);
function obj=loadData(path,motid)
obj=struct();
f=load(strcat(path,sprintf('curr_step%d.mat',motid)));
obj.currstep=f;
%prepend sone zeros to stable system identification
obj.currstep=iddata([zeros(10,1); obj.currstep.data(:,2)],[zeros(10,1); obj.currstep.data(:,3)],50E-6);
f=load(strcat(path,sprintf('full_bode_mot%d.mat',motid)));
obj.frq=f.frq*2*pi; %convert from Hz to rad/s
obj.mag=10.^(f.db_mag/20); %mag not in dB
obj.phase=f.deg_phase*pi/180; %phase in rad
response = obj.mag.*exp(1j*obj.phase);
obj.meas= idfrd(response,obj.frq,0);
end
function tfc=currstep(obj)
opt=tfestOptions;
opt.Display='off';
tfc = tfest(obj.currstep, 2, 0,opt);
den=tfc.Denominator;
num=tfc.Numerator;
k=num(1);
w0=sqrt(num(1));
damp=den(2)/2/w0;
s=sprintf('k:%g w0:%g damp:%g\n',k,w0,damp);
%disp(s);
%h = stepplot(tf1);
%l=obj.currstep.OutputData
t=(0:199)*50E-6;
[y,t]=step(tfc,t);
f=figure();
subplot(1,2,1);
plot(t,y*1000,'r',t,obj.currstep.OutputData(11:210),'b');
title(s);
subplot(1,2,2);
h=bodeplot(tfc,'r');
setoptions(h,'FreqUnits','Hz','Grid','on');
end
function mot=fyStage()
mot=loadData('/home/zamofing_t/Documents/prj/SwissFEL/epics_ioc_modules/ESB_MX/python/MXTuning/18_10_02/',1);
mot.tfc=currstep(mot);
opt=tfestOptions;
opt.Display='off';
opt.initializeMethod='iv';
opt.WeightingFilter=[1,5;20,670]*(2*pi); % Hz->rad/s conversion
figure();
mot.tf4_2 = tfest(mot.meas, 4, 2, opt);
mot.tf6_4 = tfest(mot.meas, 6, 4, opt);
h=bodeplot(mot.meas,'r',mot.tf4_2,'b',mot.tf6_4,'g');
setoptions(h,'FreqUnits','Hz','Grid','on');
end
function mot=fxStage()
mot=loadData('/home/zamofing_t/Documents/prj/SwissFEL/epics_ioc_modules/ESB_MX/python/MXTuning/18_10_02/',2);
currstep(mot);
opt=tfestOptions;
opt.Display='off';
opt.initializeMethod='iv';
opt.WeightingFilter=[1,5;20,670]*(2*pi); % Hz->rad/s conversion
figure();
mot.tf4_2 = tfest(mot.meas, 4, 2, opt);
mot.tf6_4 = tfest(mot.meas, 6, 4, opt);
mot.tf13_9 = tfest(mot.meas, 13, 9, opt);
num=[5.42637491e-24 1.45926254e-21 5.20861422e-17 9.92527094e-15 1.16707977e-10 1.31240975e-08 7.03191689e-05 3.08626613e-03 7.32824533e+00];
den=[2.01035570e-35,2.33560078e-31,9.14767135e-28,2.52369732e-24,7.42150891e-21,6.89695386e-18,1.65017156e-14,5.77522779e-12,1.08386286e-08,1.13336206e-06,1.27552247e-03,2.19776479e-02,1.00000000e+00];
mot.tf_py = idtf(num,den);
h=bodeplot(mot.meas,'r',mot.tf4_2,'b',mot.tf6_4,'g',mot.tf13_9,'m',mot.tf_py,'b');
setoptions(h,'FreqUnits','Hz','Grid','on');
%controlSystemDesigner('bode',1,mot.tf_py); % <<<<<<<<< This opens a transferfiûnction that can be edited
end
close all
mot1=fyStage();
mot2=fxStage();
end
function f=SCRATCH()
%identification toolbox
systemIdentification
%opt=tfestOptions('Display','off');
%opt=tfestOptions('Display','on','initializeMethod','svf');
%opt=tfestOptions('Display','on','initializeMethod','iv','WeightingFilter',[]);
%opt=tfestOptions('Display','on','initializeMethod','iv','WeightingFilter',[1,5;20,570]);
%tf1 = tfest(mot1frq, 6, 4, opt);
% Model refinement
% Options = tf1.Report.OptionsUsed;
% Options.WeightingFilter = 'prediction';
% tf1_1 = pem(mot1frq, tf1, Options)
bodeplot(mot1frq,tf1)
mag,phase=bode(tf1,frq)
figure(1)
subplot(211)
bodeplot(tf1)
Opt = n4sidOptions('N4Horizon',[15 15 15]);
n4s3 = n4sid(mot1frq, 3, Opt)
%tf([1 2],[1 0 10])
%specifies the transfer function (s+2)/(s^2+10) while
sys=tf([1],[1,0,0])
bode(sys)
step(sys)
sys=tf([1],[1,-1,2]) %instable
sys=tf([1],[1,1,2]) %stable
%0dB at 12 Hz=12*2*pi rad/s =75.4=k^2 -> k=8.6833
sys=tf([10],[1,0,0])
%1/s^2 -> 0dB at 1Hz -40dB/decade
%10=+20dB
sys=tf([1],[1,0,2]) %not damped constant sine after step
sys=zpk([],[1,0,0],100) %stable
sys=zpk([],[-10,-10],100)
%parker stage 1
%!encoder_sim(enc=1,tbl=9,mot=9,posSf=13000./2048)
%!encoder_inc(enc=1,tbl=1,mot=1,posSf=13000./650000)
%!motor_servo(mot=1,ctrl='ServoCtrl',Kp=25,Kvfb=400,Ki=0.02,Kvff=350,Kaff=5000,MaxInt=1000)
%!motor(mot=1,dirCur=0,contCur=800,peakCur=2400,timeAtPeak=1,IiGain=5,IpfGain=8,IpbGain=8,JogSpeed=10.,numPhase=3,invDir=True,servo=None,PhasePosSf=1./81250,PhaseFindingDac=100,PhaseFindingTime=50,SlipGain=0,AdvGain=0,PwmSf=10000,FatalFeLimit=200,WarnFeLimit=100,InPosBand=2,homing='enc-index')
Ts=2E-4 % discrete sample time (servo period)
Kp=25,Kvfb=400,Ki=0.02,Kvff=350,Kaff=5000,MaxInt=1000
Kp=25,Kvfb=0,Ki=0,Kvff=0,Kaff=0,MaxInt=0
num=7.32
den=[5.995e-04 4.897e-02 1.]
open('stage_closed_loop.slx')
%sim('stage_closed_loop.slx')
sys=tf(num,den)
bode(sys)
G = tf(1.5,[1 14 40.02]);
controlSystemDesigner('bode',sys);
controlSystemDesigner
linearSystemAnalyzer
load ltiexamples
linearSystemAnalyzer(sys_dc)
controlSystemDesigner('bode',sys);
controlSystemDesigner(1,sys); % <<<<<<<<< This opens a transferfiûnction that can be edited
num=[8.32795069e-11, 1.04317228e-08, 6.68431323e-05, 3.31861324e-03, 7.32824533e+00];
den=[5.26156641e-18, 1.12897840e-14, 7.67853031e-12, 1.03201301e-08, 2.05154780e-06, 1.34279894e-03, 7.19229912e-02, 1.00000000e+00];
mot2=tf(num,den);
controlSystemDesigner('bode',mot2);
[m1,m2]=identifyFxFyStage();
controlSystemDesigner(1,m2.tf_py); % <<<<<<<<< This opens a transferfiûnction that can be edited
end

View File

@@ -27,7 +27,6 @@ import matplotlib as mpl
#mpl.use('GTKAgg') #mpl.use('GTKAgg')
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from scipy import signal from scipy import signal
from utilities import *
sys.path.insert(0,os.path.expanduser('~/Documents/prj/SwissFEL/PBTools/')) sys.path.insert(0,os.path.expanduser('~/Documents/prj/SwissFEL/PBTools/'))
#import pbtools.misc.pp_comm as pp_comm -> pp_comm.PPComm #import pbtools.misc.pp_comm as pp_comm -> pp_comm.PPComm
@@ -231,6 +230,13 @@ Examples:'''+''.join(map(lambda s:cmd+s, exampleCmd))+'\n '
fig=plt.figure(mot) fig=plt.figure(mot)
tune.bode_current(motor=mot, magMove=1000, magPhase=500, dwell=10, file=fn,fig=fig) tune.bode_current(motor=mot, magMove=1000, magPhase=500, dwell=10, file=fn,fig=fig)
plt.show(block=False) plt.show(block=False)
f=np.load(fn)
fn=fn[:-3]+'mat'
import scipy.io
scipy.io.savemat(fn, mdict=f)
print('save to matlab file:'+fn)
elif mode==2: # full recording open loop elif mode==2: # full recording open loop
for mot in (1, 2): for mot in (1, 2):
fsin=os.path.join(base, 'sine_ol_mot%d.npz' % (mot)) fsin=os.path.join(base, 'sine_ol_mot%d.npz' % (mot))