diff --git a/MXfastStageDoc/MXfastStage.tex b/MXfastStageDoc/MXfastStage.tex index 27e66d8..7896b3f 100644 --- a/MXfastStageDoc/MXfastStage.tex +++ b/MXfastStageDoc/MXfastStage.tex @@ -199,7 +199,7 @@ $\rightarrow$ at frequencies above 200 Hz, the current increses up to 2 amps, an $\rightarrow$ The closed loop response becomes bad above 20Hz (motor 1 ca. -10\%, motor 2 +5\% )\\ \FloatBarrier -\subsubsection{Friction} +\subsubsection{Friction} \label{sec:friction} To measure the friction, the stage is moved at slow speed from +lim to -lim. The current is proportional to the force. @@ -763,10 +763,6 @@ scp userservo_util userphase_util usrServoSample/usralgo.ko root@SAR-CPPM-EXPMX1 \end{verbatim} \end{tcolorbox} -\begin{tcolorbox}[colback=red!5!white,colframe=red!75!black,colbacktitle=red!50,coltitle=black,title=TODO] -Here is still work to do... -\end{tcolorbox} - \begin{tcolorbox}[width=15cm,colback=yellow!5!white,colframe=yellow!75!black,colbacktitle=yellow!50,coltitle=black,title=DeltaTau Shell] \begin{verbatim} root@:/opt/ppmac# @@ -782,6 +778,11 @@ Motor[1].Ctrl =UserAlgo.ServoCtrlAddr[1] \end{tcolorbox} +\FloatBarrier +\subsection{The reality of the state space controller} + +The state space controller assumes that the system is observable and controlable. The bode plot shows a flat amplitude at low frequencies, which makes the feeling, that the system is observable and controlable. But in fact the reason of that flat amplitude is friction (section \ref{sec:friction}). The viscode damping is also negligable.\\ +This results to the fact that $F=m \cdot \ddot{x}$ consists of really 2 integrators. But an integrator $\frac{1}{s}$ is neighter observable and controlable. Therefore we have to check, how to implement an optimal controller for such a system. diff --git a/matlab/sample.slx b/matlab/sample.slx new file mode 100644 index 0000000..9d5d363 Binary files /dev/null and b/matlab/sample.slx differ