wip
This commit is contained in:
@@ -233,7 +233,10 @@ class ShapePath(MotionBase):
|
||||
mode=-1 jog a 10mm square
|
||||
mode=0 linear motion
|
||||
mode=1 pvt motion
|
||||
kwargs: scale: scaling velocity (default=1. value=0 would stop at the point
|
||||
mode=2 spline motion
|
||||
mode=3 pvt motion using inverse fft velocity
|
||||
kwargs: scale: scaling velocity (default=1. value=0 would stop at the point
|
||||
kwargs:
|
||||
pt2pt_time : time to move from one point to the next point
|
||||
sync_frq : synchronization mark all n points
|
||||
@@ -268,8 +271,9 @@ class ShapePath(MotionBase):
|
||||
prg.append('X%g Y%g'%tuple(pos[idx,:]))
|
||||
prg.append('dwell 100')
|
||||
prg.append('Gather.Enable=0')
|
||||
elif mode==1: #### pvt motion
|
||||
elif mode in (1,3): #### pvt motion
|
||||
pt2pt_time=kwargs.get('pt2pt_time', 100)
|
||||
scale=kwargs.get('scale', 1.)
|
||||
self.meta['pt2pt_time']=pt2pt_time
|
||||
cnt=kwargs.get('cnt', 1) # move path multiple times
|
||||
sync_frq=kwargs.get('sync_frq', 10) # synchronization mark all n points
|
||||
@@ -277,19 +281,25 @@ class ShapePath(MotionBase):
|
||||
pt=self.ptsCorr
|
||||
except AttributeError:
|
||||
pt=self.points
|
||||
vel=pt[2:,:]-pt[:-2,:]
|
||||
|
||||
#pv is an array of posx posy velx vely
|
||||
pv=np.ndarray(shape=(pt.shape[0]+2,4),dtype=pt.dtype)
|
||||
pv[:]=np.NaN
|
||||
#pv[ 0,(0,1)]=2*pt[0,:]-pt[1,:]
|
||||
pv[ 0,(0,1)]=pt[0,:]
|
||||
pv[ 1:-1,(0,1)]=pt
|
||||
#pv[ -1,(0,1)]=2*pt[-1,:]-pt[-2,:]
|
||||
pv[ -1,(0,1)]=pt[-1,:]
|
||||
pv[(0,0,-1,-1),(2,3,2,3)]=0
|
||||
dist=pv[2:,(0,1)] - pv[:-2,(0,1)]
|
||||
pv[ 1:-1,(2,3)] = 1000.*dist/(2.*pt2pt_time)
|
||||
|
||||
if mode==1: # set velocity to average from prev to next point
|
||||
dist=pv[2:,(0,1)] - pv[:-2,(0,1)]
|
||||
pv[ 1:-1,(2,3)] = 1000.*dist/(2.*pt2pt_time)*scale
|
||||
else: #mode=3: set velocity to the reconstructed inverse fourier transformation
|
||||
k=pt.shape[0]
|
||||
f=np.fft.fftfreq(k, d=1./k)
|
||||
pf=np.fft.fft(pt.T)
|
||||
pfd=pf*f*1j # differentiate in fourier
|
||||
pd=np.fft.ifft(pfd)
|
||||
v=pd.real/(k*2*np.pi)
|
||||
pv[ 1:-1,(2,3)] = 1000.*v.T/(pt2pt_time)*scale # FACTORS HAS TO BEEN CHECKED
|
||||
prg.append(' linear abs')
|
||||
prg.append('X%g Y%g' % tuple(pv[0, (0,1)]))
|
||||
prg.append('dwell 10')
|
||||
|
||||
@@ -17,6 +17,31 @@ import numpy as np
|
||||
import matplotlib as mpl
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
np.set_printoptions(precision=3, suppress=True)
|
||||
|
||||
def derivate_fft_test():
|
||||
n=32.
|
||||
frq=1.
|
||||
t=np.arange(n)/n*2*np.pi
|
||||
p=np.sin(t*frq) # position array of trajectory
|
||||
|
||||
pf=np.fft.fft(p)
|
||||
print (pf)
|
||||
f=np.fft.fftfreq(pf.shape[0], d=1/n)
|
||||
|
||||
pfd=pf*f*1j #differentiate in fourier
|
||||
print (pfd)
|
||||
pd=np.fft.ifft(pfd)
|
||||
print (pd)
|
||||
|
||||
ax=plt.figure().add_subplot(1, 1, 1)
|
||||
ax.plot(t, p, '.-b', label='p')
|
||||
ax.plot(t, pd, '.-r', label='pd')
|
||||
ax.grid(True)
|
||||
plt.show(block=False)
|
||||
|
||||
pass
|
||||
|
||||
def gen_pvt(p,v,t,ts):
|
||||
'''generates a pvt motion
|
||||
p: position array
|
||||
@@ -25,9 +50,8 @@ def gen_pvt(p,v,t,ts):
|
||||
ts: servo cycle time
|
||||
!!! it is assumed, that the time intervals are constant !!!
|
||||
'''
|
||||
return
|
||||
pvt=np.ndarray(len(tt))*0
|
||||
t[-1]/ts
|
||||
pvt=np.ndarray(int(t[-1]/ts))*0
|
||||
|
||||
|
||||
tt1=np.arange(0,t[1]-t[0],ts)
|
||||
for i in range(len(t)-1):
|
||||
@@ -39,29 +63,31 @@ def gen_pvt(p,v,t,ts):
|
||||
|
||||
return pvt
|
||||
|
||||
#derivate_fft_test()
|
||||
w=40. # ms step between samples
|
||||
ts=.2 # sampling time
|
||||
n=int(w/ts)# servo cycle between samples
|
||||
k=8 #number of unique samples
|
||||
k=32 #number of unique samples
|
||||
|
||||
t = np.arange(0, w*(k+1), w) #time array of trajectory
|
||||
|
||||
#p=3.*np.cos(t)+4. #position array of trajectory
|
||||
np.random.seed(10)
|
||||
p=np.random.random(k+1)*4. #position array of trajectory
|
||||
#p=3.*np.sin(1.3+2.*t/(w*k)*2.*np.pi)+10. #position array of trajectory
|
||||
#p+=np.cos(1.5*t/(w*k)*2.*np.pi) #position array of trajectory
|
||||
#p=3.*np.sin(1.3+2.*t/(w*k)*2.*np.pi)+10.
|
||||
#p+=np.cos(1.5*t/(w*k)*2.*np.pi)
|
||||
p=np.cos(8*t*np.pi*2./(k*w)) #eine schwingung
|
||||
#np.random.seed(10)
|
||||
#p=np.random.random(k+1)*4. #position array of trajectory
|
||||
|
||||
|
||||
p[-1]=p[0] # put the first position at the end
|
||||
|
||||
tt = np.arange(t[0],t[-1], ts) #time array of servo cycles
|
||||
ax=plt.gca()
|
||||
ax=plt.figure().add_subplot(1, 1, 1)
|
||||
ax.xaxis.set_ticks(t)
|
||||
markerline, stemlines, baseline = ax.stem(t, p, '-')
|
||||
|
||||
|
||||
#best trajectory with lowest frequency
|
||||
#### best trajectory with lowest frequency ###
|
||||
p_iftf=np.fft.fft(p[:-1])
|
||||
ft=np.hstack((p_iftf[:k/2],np.zeros((n-1)*k),p_iftf[k/2:]))
|
||||
pp_ift=np.fft.ifft(ft)*n
|
||||
@@ -73,41 +99,41 @@ ax.plot(tt,pp_ift,'-b',label='ift')
|
||||
#ax.xaxis.set_ticks(x)
|
||||
#markerline, stemlines, baseline = ax.stem(x, y, '-')
|
||||
|
||||
#PVT move
|
||||
### PVT move ###
|
||||
p2=np.hstack((p[-2],p,p[1]))
|
||||
|
||||
v=(p2[2:]-p2[:-2])/(w*2)
|
||||
|
||||
gen_pvt(p,v,t,ts)
|
||||
|
||||
|
||||
pp_pvt=np.ndarray(len(tt))*0
|
||||
tt1=tt[:n]
|
||||
for i in range(len(t)-1):
|
||||
d=p[i]
|
||||
c=v[i]
|
||||
a=( -2*(p[i+1]-p[i]-v[i]*w)+ w*(v[i+1]-v[i]))/w**3
|
||||
b=(3*w*(p[i+1]-p[i]-v[i]*w)-w**2*(v[i+1]-v[i]))/w**3
|
||||
pp_pvt[i*n:(i+1)*n]=a*tt1**3+b*tt1**2+c*tt1+d
|
||||
|
||||
pp_pvt=gen_pvt(p,v,t,ts)
|
||||
ax.plot(tt,pp_pvt,'-g',label='pvt')
|
||||
|
||||
#PVT move with stop
|
||||
### PVT move with stop ###
|
||||
v*=0
|
||||
pp_p0t=np.ndarray(len(tt))*0
|
||||
for i in range(len(t)-1):
|
||||
d=p[i]
|
||||
c=v[i]
|
||||
a=( -2*(p[i+1]-p[i]-v[i]*w)+ w*(v[i+1]-v[i]))/w**3
|
||||
b=(3*w*(p[i+1]-p[i]-v[i]*w)-w**2*(v[i+1]-v[i]))/w**3
|
||||
pp_p0t[i*n:(i+1)*n]=a*tt1**3+b*tt1**2+c*tt1+d
|
||||
|
||||
pp_p0t=gen_pvt(p,v,t,ts)
|
||||
ax.plot(tt,pp_p0t,'-r',label='p0t')
|
||||
|
||||
|
||||
### PVT with ift velocity move -> PFT ###
|
||||
f=np.fft.fftfreq(k, d=1./k)
|
||||
p_pftf=np.fft.fft(p[:-1])
|
||||
p_pftfd=p_pftf*f*1j # differentiate in fourier
|
||||
print (p_pftfd)
|
||||
p_pftd=np.fft.ifft(p_pftfd)
|
||||
print (p_pftd)
|
||||
|
||||
p_pftd=np.hstack((p_pftd,p_pftd[0]))
|
||||
#ax2=plt.figure().add_subplot(1,1,1)
|
||||
#ax2.plot(t,p_pftd,'-b',label='dift')
|
||||
#ax2.grid(True)
|
||||
v=p_pftd.real/(k*2*np.pi)
|
||||
pp_pft=gen_pvt(p,v,t,ts)
|
||||
ax.plot(tt,pp_pft,'-c',label='pft')
|
||||
|
||||
ax.legend(loc='best')
|
||||
plt.show(block=False)
|
||||
|
||||
|
||||
### frequency plots ###
|
||||
|
||||
fig=plt.figure()
|
||||
ax=fig.add_subplot(1,1,1)#ax=plt.gca()
|
||||
|
||||
@@ -115,6 +141,7 @@ ax=fig.add_subplot(1,1,1)#ax=plt.gca()
|
||||
pp_iftf=np.fft.rfft(pp_ift)/(2*n)
|
||||
pp_pvtf=np.fft.rfft(pp_pvt)/(2*n)
|
||||
pp_p0tf=np.fft.rfft(pp_p0t)/(2*n)
|
||||
pp_pftf=np.fft.rfft(pp_pft)/(2*n)
|
||||
|
||||
f=np.fft.rfftfreq(pp_ift.shape[0], d=ts*1E-3)
|
||||
f=f[1:] #remove dc value frequency
|
||||
@@ -125,6 +152,8 @@ mag=abs(pp_pvtf[1:])#; mag=20*np.log10(abs(mag))
|
||||
ax.semilogx(f,mag,'-g',label='pvt') # Bode magnitude plot
|
||||
mag=abs(pp_p0tf[1:])#; mag=20*np.log10(abs(mag))
|
||||
ax.semilogx(f,mag,'-r',label='p0t') # Bode magnitude plot
|
||||
mag=abs(pp_pftf[1:])#; mag=20*np.log10(abs(mag))
|
||||
ax.semilogx(f,mag,'-c',label='pft') # Bode magnitude plot
|
||||
#ax.yaxis.set_label_text('dB ampl')
|
||||
ax.yaxis.set_label_text('ampl')
|
||||
ax.xaxis.set_label_text('frequency [Hz]')
|
||||
|
||||
Reference in New Issue
Block a user