This commit is contained in:
2019-02-01 14:04:04 +01:00
parent 5e9bc4e4c0
commit ce3a9e236f
8 changed files with 2621 additions and 164 deletions

View File

@@ -23,7 +23,6 @@
\date{\today, \currenttime\\
\texttt{git:\gitAbrHash, ver:\gitVerNo{ }\gitStatus}}
\begin{document}
\maketitle
\tableofcontents
@@ -31,14 +30,25 @@
This document describes the tuning and modeling process of the ESB-MX fast stages.
\section{Measurements}
The tool used to record data of the fast stages is the bode plots is MXTuning.py, a script specially developed to record system responses. The main cal to collect all data was:\\
The tool used to record data of the fast stages is the bode plots is MXTuning.py, a script specially developed to record system responses. The main call to collect all data was:\\
\verb|./MXTuning.py --dir MXTuning/19_01_29 --mode 64|\\
The used frequencies are: 20 kHz Phase, 5 kHz Servo, 6.25MHz AdcAmp.\\
This results in 50us PhaseTime and 0.2ms ServoTime.
According to the amplifier specs (Power Brick LV User Manual.pdf p.19). a DAC Value of $32737=2^{15}$ corresponds to 33.85A current. So 1 \verb|curr_bit| is $33.85/32737A =1.034mA$.
The used frequencies are: 20 kHz Phase, 5 kHz Servo, 6.25MHz AdcAmp. This results in 50us PhaseTime and 0.2ms ServoTime.\\
According to the amplifier specs \cite[19]{PMAClv} a DAC Value of $32737=2^{15}$ corresponds to 33.85A current. So 1 \verb|curr_bit| is $33.85/32737A =1.034mA$.\\
The Parker stages are configured to contCur=800mA ,peakCur=2400mA. Ste Specs of the D11 stage are 0.8Amp RMS (producing 4N force) and 2.4Amp peak.
\cite[245-259]{PMACusr} Shows how the PwmSf works and is explained with some calculation examples.\\
This is set in the gpasciiCommander templates:
\begin{verbatim}
PwmSf=15134.8909 # =.95*16384. PMAC3-style DSPGATE3 ASIC is being used for the output,
the counter moves between +/- 16384. PwmSf is typically set to 95% of 16384
\end{verbatim}
Nerverless the documentation is confusing. Therefore PwmSf will measure to convert idCmd bits values to idVolts bits at a DC value.
In steady state an idMeas=... results in idVolts=...
(TO BE DONE)\\
The Parker stages are configured to contCur=800mA ,peakCur=2400mA. Specs of the D11 stage are 0.8Amp RMS (producing 4N force) and 2.4Amp RMS peak.\\
It should be save to set 0.92Amp DC and 2.8Amp DC.
\subsection{Measure Current Step}
\verb|MXTuning.py mode 1| $\rightarrow$ \verb|identifyFxFyStage.m|\\
@@ -106,7 +116,7 @@ motor_servo(mot=2,Kp=22,Kvfb=350,Ki=0.02,Kvff=240,Kaff=1500,MaxInt=1000)
\subsubsection{chirp sine closed loop}
Bode plot and chirp input(blue) and output(green)
Chirp plot with input(blue) and output(green) and its bode plots.
The parameters for that sweep is:\\
\verb| amp: 5, minFrq: 10, maxFrq: 220, ts: 0.0002, tSec: 20|
@@ -166,6 +176,44 @@ Solving in Laplace space:\\
$iqVolts=(R+Ls)\cdot iqMeas$\\
$s \cdot iqMeas =\frac{1}{L}iqVolts - \frac{R}{L}iqMeas$\\
Transferfunction open loop of $G_1(s)=iqVolts \rightarrow iqCmd$
\\
using Masons rule:
\url{https://en.wikipedia.org/wiki/Mason's_gain_formula}:
\[
G_1(s)=\frac{y_{out}}{y_{in}}=\frac{iqCmd}{iqVolts}=
\frac{\frac{1}{Ls}}{1+ \frac{R}{Ls}} = \frac{1}{Ls+R} = \frac{k}{1+Ts} = \frac{\frac{1}{R}}{1+\frac{L}{R}s}
\]
\vspace{1pc}
Transferfunction closed loop of $G_2(s)=iqCmd \rightarrow iqMeas$:
\[
\begin{aligned}
&\text{with}\quad
a=Ipf+\frac{Li}{s} \quad
b=PwmSF \cdot G(s) \quad
c=Ipb \quad
d=1\\
&\text{using Masons rule:} \quad G_2(s)=\frac{ab}{1+bc+abd}\\
\\
&\text{extending:} \quad =\frac{(Ipf+\frac{Ii}{s}) \cdot PwmSF \cdot G_1(s)}
{1+PwmSF \cdot G_1(s) \cdot Ipb +(Ipf+\frac{Ii}{s})
\cdot PwmSF \cdot G_1(s)}\\
\\
&=\left.\frac{(Ipf+\frac{Ii}{s}) \cdot PwmSF \cdot \frac{1}{Ls+R}}
{1+PwmSF \cdot \frac{1}{Ls+R} \cdot Ipb +(Ipf+\frac{Ii}{s}) \cdot PwmSF \cdot \frac{1}{Ls+R}} \right| \cdot (Ls+R) \cdot s\\
\\
&=\frac{(Ipf \cdot s+Ii) \cdot PwmSF }
{(Ls+R)s+PwmSF \cdot Ipb \cdot s +(Ipf \cdot s+Ii) \cdot PwmSF }\\
\\
&=\frac{Ipf \cdot s+Ii }
{\frac{L}{PwmSF}s^2 +(\frac{R}{PwmSF}+ Ipb+Ipf)s +Ii}\\
\\
\end{aligned}
\]
\subsection{Mechanical model}
@@ -302,6 +350,24 @@ Therefore the model seems good enough
\newpage
\section{HelicalScan coordinates}
\begin{figure}[h!]
\includegraphics[scale=.4]{../helicalscanDoc/helicalscan1a.eps}
\includegraphics[scale=.4]{../helicalscanDoc/helicalscan2a.eps}
\includegraphics[scale=.4]{../helicalscanDoc/helicalscan3a.eps}
\caption{coordinate transformation}
\end{figure}
%proces compiled as job \texttt{\jobname} from the file \texttt{\currfileabspath}\\
%\eject
%
@@ -314,4 +380,9 @@ Therefore the model seems good enough
%Verbatim
% Verbatim
%\end{Verbatim}
\end{document}
\newpage
\bibliographystyle{alpha}
\bibliography{myBib}
%\printbibliography
\end{document}