matlab wip
This commit is contained in:
@@ -1,25 +1,31 @@
|
||||
%http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlStateSpace
|
||||
%zustandsregler:
|
||||
% web(fullfile(docroot, 'simulink/examples.html'))
|
||||
% web(fullfile(docroot, 'simulink/examples/inverted-pendulum-with-animation.html'))
|
||||
% web(fullfile(docroot, 'simulink/examples/double-spring-mass-system.html'))
|
||||
function [Nbar,A,B,C,D,Ao,Bo,Co,Do,L,K]=StateSpaceControlDesign(mot,motid)
|
||||
sys=mot.ss;
|
||||
sys=ss(sys.A,sys.B,sys.C(3,:),0); % $$$ only output position
|
||||
function [ssc]=StateSpaceControlDesign(mot,motid)
|
||||
% !!! first it need to run: [mot1,mot2]=identifyFxFyStage() tobuild a motor object !!!
|
||||
%
|
||||
% builds a state space controller designed for the plant.
|
||||
% shows step answers of open and closed loop, also for the observer controller and the final discrete observer
|
||||
%
|
||||
% finally it opens a simulink observer file for testing
|
||||
|
||||
%sys=ss(tf(mot1.mdl.num1,mot1.mdl.den1));
|
||||
%A=sys.A;
|
||||
%B=sys.B;
|
||||
%C=sys.C;
|
||||
%[A,B,C,D]=tf2ss(mot1.mdl.num1,mot1.mdl.den1)
|
||||
%tf2ss(mot1.mdl.num1,mot1.mdl.den1)
|
||||
|
||||
figure();h=bodeplot(sys);
|
||||
%References:
|
||||
%http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlStateSpace
|
||||
%space state controller:
|
||||
% web(fullfile(docroot, 'simulink/examples.html'))
|
||||
% web(fullfile(docroot, 'simulink/examples/inverted-pendulum-with-animation.html'))
|
||||
% web(fullfile(docroot, 'simulink/examples/double-spring-mass-system.html'))
|
||||
%
|
||||
% https://www.youtube.com/watch?v=Lax3etc837U
|
||||
|
||||
ss_ol=mot.ss;
|
||||
ss_ol.Name='open loop';
|
||||
%sys=ss(sys.A,sys.B,sys.C(3,:),0); % this would reduce the outputs to position only
|
||||
|
||||
figure();h=bodeplot(ss_ol);
|
||||
setoptions(h,'IOGrouping','all')
|
||||
A=sys.A;
|
||||
B=sys.B;
|
||||
C=sys.C;
|
||||
D=sys.D;
|
||||
A=ss_ol.A;
|
||||
B=ss_ol.B;
|
||||
C=ss_ol.C;
|
||||
D=ss_ol.D;
|
||||
|
||||
P=ctrb(A,B);
|
||||
if rank(A)==rank(P)
|
||||
@@ -36,38 +42,62 @@ function [Nbar,A,B,C,D,Ao,Bo,Co,Do,L,K]=StateSpaceControlDesign(mot,motid)
|
||||
end
|
||||
|
||||
|
||||
% step answer on open loop:
|
||||
t = 0:1E-4:.5;
|
||||
u = ones(size(t)); %1000um
|
||||
x0 = zeros(1,length(sys.A));
|
||||
|
||||
[y,t,x] = lsim(sys,u,t,x0);
|
||||
figure();plot(t,y)
|
||||
u = ones(size(t));
|
||||
x0 = zeros(1,length(ss_ol.A));
|
||||
|
||||
[y,t,x] = lsim(ss_ol,u,t,x0);
|
||||
figure();plot(t,y);title('step on open loop');
|
||||
|
||||
poles = eig(A);
|
||||
w0=abs(poles);
|
||||
ang=angle(-poles);
|
||||
%-------------------
|
||||
%p=w0.*exp(j.*ang)
|
||||
|
||||
% *** space state controller ***
|
||||
%
|
||||
%place poles for the controller feedback
|
||||
if motid==1
|
||||
%2500rad/s = 397Hz -> locate poles here
|
||||
p1=-3300+2800i;
|
||||
p2=-1500+500i;
|
||||
p3=-1200+10i;
|
||||
p2=-2700+500i;
|
||||
p3=-2500+10i;
|
||||
%p1=-3300+2800i;
|
||||
%p2=-1500+500i;
|
||||
%p3=-1200+10i;
|
||||
P=[p1 p1' p2 p2' p3 p3'];
|
||||
else
|
||||
%2500rad/s = 397Hz -> locate poles here
|
||||
p1=-3300+2800i;
|
||||
p2=-1900+130i;
|
||||
p3=-2900+80i;
|
||||
p4=-2300+450i;
|
||||
p5=-2000+20i;
|
||||
p6=-1500+10i;
|
||||
%p1=-3300+2800i;
|
||||
%p2=-1500+500i;
|
||||
%p3=-1200+10i;
|
||||
P=[p1 p1' p2 p2' p3 p3'];% p4 p4' p5 p5' p6 p6'];
|
||||
end
|
||||
K = place(A,B,P);
|
||||
%K = acker(A,B,P);
|
||||
%K = acker(A,B,[p1 p1' p2 p2' p3 p3']);
|
||||
%K = place(A,B,[p1 p1']);
|
||||
%Nbar = rscale(sys,K);
|
||||
%Nbar=1;
|
||||
Nbar=-1./(C*(A-B*K)^-1*B); %from my notes)
|
||||
V=-1./(C*(A-B*K)^-1*B); %(from Lineare Regelsysteme2 (Glattfelder) page:173 )
|
||||
%Nbar(2)=1; %the voltage stuff is crap for now
|
||||
if length(Nbar)>1
|
||||
Nbar=Nbar(3); % only the position scaling needed
|
||||
if length(V)>1
|
||||
V=V(3); % only the position scaling needed
|
||||
end
|
||||
sys_cl = ss(A-B*K,B,C,0);
|
||||
[y,t,x]=lsim(sys_cl,Nbar*u,t,x0);
|
||||
figure();plot(t,y)
|
||||
|
||||
% step answer on closed loop with space state controller:
|
||||
t = 0:1E-4:.5;
|
||||
ss_cl = ss(A-B*K,B*V,C,0,'Name','space state controller','InputName',mot.ss.InputName,'OutputName',mot.ss.OutputName);
|
||||
[y,t,x]=lsim(ss_cl,V*u,t,x0);
|
||||
figure();plot(t,y);title('step on closed loop');
|
||||
|
||||
|
||||
% *** observer controller ***
|
||||
%
|
||||
%observer poles-> 5 times farther left than system poles
|
||||
if motid==1
|
||||
op1=(p1*5);
|
||||
@@ -75,26 +105,66 @@ function [Nbar,A,B,C,D,Ao,Bo,Co,Do,L,K]=StateSpaceControlDesign(mot,motid)
|
||||
op3=(p3*5);
|
||||
OP=[op1 op1' op2 op2' op3 op3'];
|
||||
else
|
||||
op1=(p1*2);
|
||||
op2=(p2*2);
|
||||
op3=(p3*2);
|
||||
op4=(p4*2);
|
||||
op5=(p5*2);
|
||||
op6=(p6*2);
|
||||
OP=[op1 op1' op2 op2' op3 op3'];% op4 op4' op5 op5' op6 op6'];
|
||||
end
|
||||
L=place(A',C',OP)';
|
||||
%L=acker(A',C',OP)';
|
||||
|
||||
At = [ A-B*K B*K
|
||||
zeros(size(A)) A-L*C ];
|
||||
Bt = [ B*Nbar
|
||||
Bt = [ B*V
|
||||
zeros(size(B)) ];
|
||||
Ct = [ C zeros(size(C)) ];
|
||||
sys = ss(At,Bt,Ct,0);
|
||||
lsim(sys,ones(size(t)),t,[x0 x0]);
|
||||
|
||||
%https://www.youtube.com/watch?v=Lax3etc837U
|
||||
% step answer on closed loop with observer controller:
|
||||
ss_o = ss(At,Bt,Ct,0,'Name','observer controller','InputName',{'desPos'},'OutputName',mot.ss.OutputName);
|
||||
figure();lsim(ss_o,ones(size(t)),t,[x0 x0]);title('step on closed loop with observer');
|
||||
|
||||
|
||||
% *** disctrete observer controller ***
|
||||
%
|
||||
Ts=1/5000; % 5kHz
|
||||
ss_od = c2d(ss_o,Ts);
|
||||
ss_od .Name='discrete obsvr ctrl';
|
||||
% step answer on closed loop with disctrete observer controller:
|
||||
t = 0:Ts:.05;
|
||||
figure();lsim(ss_od ,ones(size(t)),t,[x0 x0]);title('step on closed loop with observer discrete');
|
||||
|
||||
|
||||
%plot all bode diagrams of desPos->actPos
|
||||
figure();
|
||||
h=bodeplot(ss_cl(3),ss_o(3),ss_od(3));
|
||||
setoptions(h,'FreqUnits','Hz','Grid','on');legend('location','sw');
|
||||
|
||||
figure();
|
||||
h=pzplot(ss_cl(3),ss_o(3),ss_od(3));
|
||||
setoptions(h,'FreqUnits','Hz','Grid','on');legend('location','sw');
|
||||
|
||||
|
||||
%calculate matrices for the simulink system
|
||||
Ao=A-L*C;
|
||||
Bo=[B L];
|
||||
Co=K;
|
||||
Do=zeros(size(Co,1),size(Bo,2));
|
||||
mdlName='observer';
|
||||
open(mdlName)
|
||||
open(mdlName);
|
||||
|
||||
%state space controller
|
||||
ssc=struct();
|
||||
for k=["Ts","A","B","C","D","Ao","Bo","Co","Do","V","K","L","ss_cl","ss_o","ss_od"]
|
||||
ssc=setfield(ssc,k,eval(k));
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
|
||||
%code snipplets from an example on youtube (see reference at top)
|
||||
function SCRATCH()
|
||||
A = [ 0 1 0
|
||||
980 0 -2.8
|
||||
|
||||
Reference in New Issue
Block a user