towards fixing helican display ang angle inconsistency

all works fine but the manip=True not yet fixed.
The angle of param and coord transform using the new angle
be aware: of ofset for sine cosine (line 1075)
This commit is contained in:
2018-10-19 16:04:09 +02:00
parent 6461cdff60
commit 6a606a2956

View File

@@ -169,25 +169,30 @@ class HelicalScanGui():
self.manip=manip self.manip=manip
self.ax=ax=plt3d.Axes3D(fig,[0.02, 0.15, 0.96, 0.83]) self.ax=ax=plt3d.Axes3D(fig,[0.02, 0.15, 0.96, 0.83])
ax.set_xlabel('Z');ax.set_ylabel('X');ax.set_zlabel('Y') ax.set_xlabel('Z');ax.set_ylabel('X');ax.set_zlabel('Y')
ax.view_init(elev=14., azim=-170) ax.view_init(elev=10, azim=-170)
# param[i]=(z_i, y_i, x_i, r_i,phi_i) # param[i]=(z_i, y_i, x_i, r_i,phi_i)
ctr=param[:,0:3].mean(0)[::-1]
l=max(2*param[:,3].max(),param[:,1].ptp()) #max of diameter and y peaktopeak l=max(2*param[:,3].max(),param[:,1].ptp()) #max of diameter and y peaktopeak
self.scale=l #scale is the length of a cube were the pltCrist object fits into self.scale=l #scale is the length of a cube were the pltCrist object fits into
self.axSetCenter((0,0,0),l)
axCx=plt.axes([0.1, 0.01, 0.8, 0.02]) axCx=plt.axes([0.1, 0.01, 0.8, 0.02])
axCz=plt.axes([0.1, 0.04, 0.8, 0.02]) axCz=plt.axes([0.1, 0.04, 0.8, 0.02])
axW =plt.axes([0.1, 0.07, 0.8, 0.02]) axW =plt.axes([0.1, 0.07, 0.8, 0.02])
axFy=plt.axes([0.1, 0.10, 0.8, 0.02]) axFy=plt.axes([0.1, 0.10, 0.8, 0.02])
#lz=ax.get_xlim() if manip:
#lx=ax.get_ylim() #x-450 -> center==0 y0=param[:, 1].mean()
#ly=ax.get_zlim() ly=sorted(param[:,1])
ly = param[::-1,1] x0=param[:, 2].mean()
x0=param[:, 2].mean() lx=(-l/2+x0,l/2+x0)
lx=(-l/2+x0,l/2+x0) z0=param[:, 0].mean()
z0=param[:, 0].mean() lz=(-l/2+z0,l/2+z0)
lz=(-l/2+z0,l/2+z0) self.axSetCenter((x0,y0,z0),l)
else:
self.axSetCenter((0, 0, 0), l)
ly=sorted(param[:,1])
x0=param[:, 2].mean()
lx=(-l/2+x0,l/2+x0)
z0=param[:, 0].mean()
lz=(-l/2+z0,l/2+z0)
self.sldCx=sCx=Slider(axCx, 'cx', lx[0], lx[1], valinit=(lx[0]+lx[1])/2.) self.sldCx=sCx=Slider(axCx, 'cx', lx[0], lx[1], valinit=(lx[0]+lx[1])/2.)
self.sldCz=sCz=Slider(axCz, 'cz', lz[0], lz[1], valinit=(lz[0]+lz[1])/2.) self.sldCz=sCz=Slider(axCz, 'cz', lz[0], lz[1], valinit=(lz[0]+lz[1])/2.)
@@ -198,21 +203,12 @@ class HelicalScanGui():
sW.on_changed(self.update_cx_cz_w_fy) sW.on_changed(self.update_cx_cz_w_fy)
sFy.on_changed(self.update_cx_cz_w_fy) sFy.on_changed(self.update_cx_cz_w_fy)
if manip:
#self.pltCrist(-x0, -z0, 0, -param[:,1].mean())
self.pltCrist(0,0,0,0)
else:
self.pltOrig(Trf.trans(0, 0, 0))
self.update_cx_cz_w_fy() self.update_cx_cz_w_fy()
#self.pltCrist(0,0,0,0)
# param[i]=(z_i, y_i, x_i, r_i,phi_i)
p=np.ndarray((param.shape[0], 3))
for i in range(2):
(z_i, y_i, x_i, r_i, phi_i)=param[i]
p[i,0]=x_i+r_i*np.sin(phi_i) # x= x_i+r_i*cos(phi_i+w)+cx
p[i,1]=y_i # y= y_i
p[i,2]=z_i+r_i*np.cos(phi_i) # z= z_i+r_i*sin(phi_i*w)
print(p)
ofs=(p[1]+p[0])/2. # = center of the cristal
ofs=(0,0,0)
m=Trf.trans(*ofs); self.pltOrig(m)
plt.show() plt.show()
def update_cx_cz_w_fy(self,val=None): def update_cx_cz_w_fy(self,val=None):
@@ -226,16 +222,18 @@ class HelicalScanGui():
p = np.ndarray((param.shape[0], 3)) p = np.ndarray((param.shape[0], 3))
for i in range(2): for i in range(2):
(z_i, y_i, x_i, r_i, phi_i) = param[i] (z_i, y_i, x_i, r_i, phi_i) = param[i]
p[i, 0] = x_i + r_i * np.cos(phi_i) # x= x_i+r_i*cos(phi_i+w)+cx p[i, 0] = x_i + r_i * np.sin(phi_i) # x= x_i+r_i*cos(phi_i+w)+cx
p[i, 1] = y_i # y= y_i p[i, 1] = y_i # y= y_i
p[i, 2] = z_i + r_i * np.sin(phi_i) # z= z_i+r_i*sin(phi_i*w) p[i, 2] = z_i + r_i * np.cos(phi_i) # z= z_i+r_i*sin(phi_i*w)
print(p)
m = Trf.trans(cx,fy,cz) m = Trf.trans(cx,fy,cz)
m= m.dot(Trf.rotY(w*d2r)) m= m.dot(Trf.rotY(w*d2r))
#TODO: THE MODES WITH manip=True are totally wrong...
#m=Trf.rotY(w*d2r)
#m=m.dot(Trf.trans(cx,fy,cz))
self.pltOrig(m) self.pltOrig(m)
else: else:
w=w*d2r w=w*d2r
self.pltCrist(-cx, -cz, w, -fy) self.pltCrist(-cx, -cz, -w, -fy)
#self.pltCrist(cx,cz,w*d2r,fy) #self.pltCrist(cx,cz,w*d2r,fy)
self.fig.canvas.draw_idle() self.fig.canvas.draw_idle()
@@ -244,13 +242,12 @@ class HelicalScanGui():
self.fig=fig=plt.figure() self.fig=fig=plt.figure()
self.ax=ax=plt3d.Axes3D(fig,[0.02, 0.15, 0.96, 0.83]) self.ax=ax=plt3d.Axes3D(fig,[0.02, 0.15, 0.96, 0.83])
ax.set_xlabel('Z');ax.set_ylabel('X');ax.set_zlabel('Y') ax.set_xlabel('Z');ax.set_ylabel('X');ax.set_zlabel('Y')
ax.view_init(elev=14., azim=10) ax.view_init(elev=10, azim=-170)
# param[i]=(z_i, y_i, x_i, r_i,phi_i) # param[i]=(z_i, y_i, x_i, r_i,phi_i)
l=max(2*param[:,3].max(),param[:,1].ptp()) #max of diameter and y peaktopeak l=max(2*param[:,3].max(),param[:,1].ptp()) #max of diameter and y peaktopeak
self.scale=l #scale is the length of a cube were the pltCrist object fits into self.scale=l #scale is the length of a cube were the pltCrist object fits into
ctr=(0,0,0) self.axSetCenter((0,0,0),l)
self.axSetCenter(ctr,param[0,3]+param[1,3])
axDx=plt.axes([0.1, 0.01, 0.8, 0.02]) axDx=plt.axes([0.1, 0.01, 0.8, 0.02])
axDz=plt.axes([0.1, 0.04, 0.8, 0.02]) axDz=plt.axes([0.1, 0.04, 0.8, 0.02])
@@ -259,7 +256,7 @@ class HelicalScanGui():
lz=ax.get_xlim() lz=ax.get_xlim()
lx=ax.get_ylim() lx=ax.get_ylim()
ly = param[::-1,1] ly=sorted(param[:,1])
self.sldDx=sDx=Slider(axDx, 'dx', lx[0], lx[1], valinit=(lx[0]+lx[1])/2.) self.sldDx=sDx=Slider(axDx, 'dx', lx[0], lx[1], valinit=(lx[0]+lx[1])/2.)
self.sldDz=sDz=Slider(axDz, 'dz', lz[0], lz[1], valinit=(lz[0]+lz[1])/2.) self.sldDz=sDz=Slider(axDz, 'dz', lz[0], lz[1], valinit=(lz[0]+lz[1])/2.)
self.sldW =sW =Slider(axW, 'ang', -180., 180.0, valinit=0) self.sldW =sW =Slider(axW, 'ang', -180., 180.0, valinit=0)
@@ -269,23 +266,25 @@ class HelicalScanGui():
sW.on_changed(self.update_dx_dz_w_y) sW.on_changed(self.update_dx_dz_w_y)
sY.on_changed(self.update_dx_dz_w_y) sY.on_changed(self.update_dx_dz_w_y)
self.pltOrig(Trf.trans(0, 0, 0))
# param[i]=(z_i, y_i, x_i, r_i,phi_i) self.update_dx_dz_w_y()
p=np.ndarray((param.shape[0], 3))
for i in range(2):
(z_i, y_i, x_i, r_i, phi_i)=param[i]
p[i,0]=x_i+r_i*np.sin(phi_i) # x= x_i+r_i*cos(phi_i+w)+cx
p[i,1]=y_i # y= y_i
p[i,2]=z_i+r_i*np.cos(phi_i) # z= z_i+r_i*sin(phi_i*w)
ofs=(p[1]+p[0])/2. # = center of the cristal
print('p, ofs',p,ofs)
m=Trf.trans(0,0,0); self.pltOrig(m)
self.pltCrist(cx=-ofs[0],cz=-ofs[2],w=0,fy=-ofs[1])
plt.show() plt.show()
# # param[i]=(z_i, y_i, x_i, r_i,phi_i)
# p=np.ndarray((param.shape[0], 3))
# for i in range(2):
# (z_i, y_i, x_i, r_i, phi_i)=param[i]
# p[i,0]=x_i+r_i*np.sin(phi_i) # x= x_i+r_i*cos(phi_i+w)+cx
# p[i,1]=y_i # y= y_i
# p[i,2]=z_i+r_i*np.cos(phi_i) # z= z_i+r_i*sin(phi_i*w)
# ofs=(p[1]+p[0])/2. # = center of the cristal
# print('p, ofs',p,ofs)
#
# m=Trf.trans(0,0,0); self.pltOrig(m)
# self.pltCrist(cx=-ofs[0],cz=-ofs[2],w=0,fy=-ofs[1])
#plt.show()
def update_dx_dz_w_y(self,val=None): def update_dx_dz_w_y(self,val=None):
print(val)
helScn=self.helScn helScn=self.helScn
dx = self.sldDx.val dx = self.sldDx.val
dz = self.sldDz.val dz = self.sldDz.val
@@ -293,7 +292,6 @@ class HelicalScanGui():
y = self.sldY.val y = self.sldY.val
w=w*d2r w=w*d2r
(cx,cz,w,fy)=helScn.inv_transform(dx,dz,w,y) (cx,cz,w,fy)=helScn.inv_transform(dx,dz,w,y)
#print (cx,cz,w,fy)
self.pltCrist(-cx,-cz,w,-fy) self.pltCrist(-cx,-cz,w,-fy)
self.fig.canvas.draw_idle() self.fig.canvas.draw_idle()
@@ -303,11 +301,12 @@ class HelicalScanGui():
fig = plt.figure() fig = plt.figure()
self.ax=ax=plt3d.Axes3D(fig,[0.02, 0.15, 0.96, 0.83]) self.ax=ax=plt3d.Axes3D(fig,[0.02, 0.15, 0.96, 0.83])
ax.set_xlabel('Z');ax.set_ylabel('X');ax.set_zlabel('Y') ax.set_xlabel('Z');ax.set_ylabel('X');ax.set_zlabel('Y')
ax.view_init(elev=14., azim=10) ax.view_init(elev=10, azim=-170)
# param[i]=(z_i, y_i, x_i, r_i,phi_i) # param[i]=(z_i, y_i, x_i, r_i,phi_i)
ctr=(0,0,0) l=max(2*param[:,3].max(),param[:,1].ptp()) #max of diameter and y peaktopeak
self.axSetCenter(ctr,param[0,3]+param[1,3]) self.scale=l #scale is the length of a cube were the pltCrist object fits into
self.axSetCenter((0,0,0),l)
axFrm=plt.axes([0.1, 0.01, 0.8, 0.02]) axFrm=plt.axes([0.1, 0.01, 0.8, 0.02])
@@ -315,25 +314,24 @@ class HelicalScanGui():
ly = param[:,1] ly = param[:,1]
self.sldFrm=sFrm=Slider(axFrm, 'frm', 0, rec.shape[0]-1, valinit=0) self.sldFrm=sFrm=Slider(axFrm, 'frm', 0, rec.shape[0]-1, valinit=0)
sFrm.on_changed(self.update_anim) sFrm.on_changed(self.update_anim)
m=Trf.trans(0,0,0); self.pltOrig(m)
self.hCrist=None
self.fig=fig self.fig=fig
animCnt=100 self.pltOrig(Trf.trans(0,0,0))
self.step=rec.shape[0]/animCnt
#a = anim.FuncAnimation(fig, self.anim_gather_data, animCnt, fargs=(), interval=20, repeat=False, blit=False)
self.update_anim(0) self.update_anim(0)
#following lines make an animation
#animCnt=100
#self.step=rec.shape[0]/animCnt
#a = anim.FuncAnimation(fig, self.anim_gather_data, animCnt, fargs=(), interval=20, repeat=False, blit=False)
plt.show() plt.show()
pass pass
def update_anim(self,frm): def update_anim(self,frm):
print(frm)
rec=self.helScn.rec rec=self.helScn.rec
(cx, cz, w, fy)=rec[int(frm),:] (cx, cz, w, fy)=rec[int(frm),:]
#data/=. #scale from um to mm #data/=. #scale from um to mm
w*=d2r/1000 # scale from deg to rad w*=d2r/1000 # scale from deg to rad
#print (cx,cz,w,fy) self.pltCrist(-cx,-cz,w,-fy)
self.hCrist,pt=self.pltCrist(-cx,-cz,w,-fy,self.hCrist)
self.fig.canvas.draw_idle() self.fig.canvas.draw_idle()
def anim_gather_data(self,idx): def anim_gather_data(self,idx):
@@ -354,7 +352,7 @@ class HelicalScanGui():
r=m[idx,0]*self.scale/3.#1st r=m[idx,0]*self.scale/3.#1st
g=m[idx,1]*self.scale/3.#2nd g=m[idx,1]*self.scale/3.#2nd
b=m[idx,2]*self.scale/3.#3rd b=m[idx,2]*self.scale/3.#3rd
o=m[idx,3]*self.scale/3.#origin o=m[idx,3] #origin !do not scale orogin
lines = np.ndarray((3, 2, 3)) # numlines, points, xyz lines = np.ndarray((3, 2, 3)) # numlines, points, xyz
lines[:, 0, :] = o lines[:, 0, :] = o
lines[0, 1, :] = o + r lines[0, 1, :] = o + r
@@ -387,7 +385,7 @@ class HelicalScanGui():
x+=cx;y+=fy;z+=cz;phi+=w x+=cx;y+=fy;z+=cz;phi+=w
pt[i] = (z, x, y) pt[i] = (z, x, y)
pt[i + 2] = (z + r * np.cos(phi), x + r * np.sin(phi), y) pt[i + 2] = (z + r * np.cos(phi), x + r * np.sin(phi), y)
obj = mpl.patches.Circle((z, x), r, facecolor=mpl.colors.colorConverter.to_rgba('y', alpha=0.2)) obj = mpl.patches.Circle((z, x), r, facecolor=mpl.colors.colorConverter.to_rgba('y' if i==0 else 'r', alpha=0.2))
h1=ax.add_patch(obj) h1=ax.add_patch(obj)
h2=plt3d.art3d.pathpatch_2d_to_3d(obj, z=y, zdir="z") h2=plt3d.art3d.pathpatch_2d_to_3d(obj, z=y, zdir="z")
#print h1._segment3d #print h1._segment3d
@@ -403,7 +401,7 @@ class HelicalScanGui():
ax.add_artist(hl);h.append(hl) ax.add_artist(hl);h.append(hl)
lseg=tuple(lines) lseg=tuple(lines)
col=(mpl.colors.colorConverter.to_rgba('r'),)*len(lseg) col=(mpl.colors.colorConverter.to_rgba('k'),)*len(lseg)
hlc=plt3d.art3d.Line3DCollection(lseg,colors=col)#, *args[argi:], **kwargs) hlc=plt3d.art3d.Line3DCollection(lseg,colors=col)#, *args[argi:], **kwargs)
ax.add_collection(hlc);h.append(hlc) ax.add_collection(hlc);h.append(hlc)
self.hCrist=h self.hCrist=h
@@ -414,7 +412,7 @@ class HelicalScanGui():
pt[i] = (z, x, y) pt[i] = (z, x, y)
pt[i + 2] = (z + r * np.cos(phi), x + r * np.sin(phi), y) pt[i + 2] = (z + r * np.cos(phi), x + r * np.sin(phi), y)
h[i].remove() h[i].remove()
obj = mpl.patches.Circle((z, x), r, facecolor=mpl.colors.colorConverter.to_rgba('y', alpha=0.2)) obj = mpl.patches.Circle((z, x), r, facecolor=mpl.colors.colorConverter.to_rgba('y' if i==0 else 'r', alpha=0.2))
ax.add_patch(obj) ax.add_patch(obj)
plt3d.art3d.pathpatch_2d_to_3d(obj, z=y, zdir="z") plt3d.art3d.pathpatch_2d_to_3d(obj, z=y, zdir="z")
h[i]=obj h[i]=obj
@@ -436,7 +434,9 @@ class HelicalScanGui():
return (h,pt) return (h,pt)
def get_meas_lines(self,pt,cx,cz,fy,w): def get_meas_lines(self,pt,cx,cz,fy,w,arwLen=None):
if arwLen is None:
arwLen=self.scale*.05 # default arrow length=0.01 of crystal size
param = self.helScn.param param = self.helScn.param
pts = self.helScn.points pts = self.helScn.points
dx_ = pts[:, 0] # add 0.2 to test dx_ = pts[:, 0] # add 0.2 to test
@@ -453,8 +453,8 @@ class HelicalScanGui():
lines[:, 0, 0] = pt[2, 0] + (pt[3, 0] - pt[2, 0]) * f +ofx # z data lines[:, 0, 0] = pt[2, 0] + (pt[3, 0] - pt[2, 0]) * f +ofx # z data
lines[:, 0, 1] = pt[2, 1] + (pt[3, 1] - pt[2, 1]) * f +ofy # x data lines[:, 0, 1] = pt[2, 1] + (pt[3, 1] - pt[2, 1]) * f +ofy # x data
lines[:, 0, 2] = pts[:, 3] + fy # y data lines[:, 0, 2] = pts[:, 3] + fy # y data
lines[:, 1, 0] = lines[:, 0, 0] + np.cos(w-w_)*.1 lines[:, 1, 0] = lines[:, 0, 0] + np.cos(w-w_)*arwLen
lines[:, 1, 1] = lines[:, 0, 1] + np.sin(w-w_)*.1 lines[:, 1, 1] = lines[:, 0, 1] + np.sin(w-w_)*arwLen
lines[:, 1, 2] = lines[:, 0, 2] lines[:, 1, 2] = lines[:, 0, 2]
return lines return lines
@@ -549,25 +549,32 @@ class HelicalScanTests():
plt.legend(handels=h) plt.legend(handels=h)
pass pass
def calcParamSim(helScn): @staticmethod
def calcParamSim():
#simulated test values #simulated test values
n = 3.; n = 3.;
per = 1.; per = 1.;
w = 2 * np.pi * per / n * np.arange(n) w = 2 * np.pi * per / n * np.arange(n)
#p = ((2.3, .71, 4.12, 10.6 * d2r),(6.2, .45, 3.2, 45.28 * d2r)) # (y, bias, ampl, phi) #(z_i, y_i, x_i, r_i, phi_i)=param[i]
p = ((2.3, -100., 10, 10. * d2r),(6.2, 100., 10., -10. * d2r)) # (y, bias, ampl, phi) #paramSim = ((14.5, 2.3, .71, 4.12, 10.6 * d2r),(14.5, 6.2, .45, 3.2, 45.28 * d2r)) # (y, bias, ampl, phi)
helScn.param = param = np.ndarray((len(p), 5)) #paramSim = ((14.5, 2.3, -100., 10, 10. * d2r),(14.5, 6.2, 100., 10., -10. * d2r)) # (y, bias, ampl, phi)
z = 14.5 # fix z position paramSim = ((14.5, 2.3, -100., 10, 0. * d2r),(14.5, 6.2, 100., 10., 90. * d2r)) # (y, bias, ampl, phi)
for i in range(2): paramSim=np.array(paramSim)
(y, bias, ampl, phi) = p[i] param = np.ndarray(paramSim.shape)
x = ampl * np.cos(w + phi) + bias for i in range(param.shape[0]):
print('yMeas_%d=' % i + str(y) + ' xMeas_%d=' % i + str(x)) (z,y,bias,ampl,phi) = paramSim[i]
measX = ampl * np.sin(w + phi) + bias
measZ = ampl * np.cos(w + phi) + bias
print('xMeas_%d=' % i + str(measX) + ' zMeas_%d=' % i + str(measZ))
# param[i]=(z_i, y_i, x_i, r_i,phi_i) # param[i]=(z_i, y_i, x_i, r_i,phi_i)
param[i, 0] = z param[i, 0] = z
param[i, 1] = y param[i, 1] = y
param[i, 2:] = HelicalScan.meas_rot_ctr(x) # (bias,ampl,phase) param[i, 2:] = HelicalScan.meas_rot_ctr(measX) # (bias,ampl,phase)
(bias, ampl, phase) = param[i][2:] (bias, ampl, phase) = param[i][2:]
print(param) print(param)
print(paramSim)
assert((paramSim-param).max()<1E-10)
return param
class HelicalScan(MotionBase): class HelicalScan(MotionBase):
@@ -597,9 +604,9 @@ class HelicalScan(MotionBase):
p=np.ndarray((param.shape[0], 3)) p=np.ndarray((param.shape[0], 3))
for i in range(2): for i in range(2):
(z_i, y_i, x_i, r_i, phi_i)=param[i] (z_i, y_i, x_i, r_i, phi_i)=param[i]
p[i,0]=x_i+r_i*np.cos(phi_i+w) # x= x_i+r_i*cos(phi_i+w)+cx p[i,0]=x_i+r_i*np.sin(phi_i+w) # x= x_i+r_i*cos(phi_i+w)+cx
p[i,1]=y_i # y= y_i p[i,1]=y_i # y= y_i
p[i,2]=z_i-r_i*np.sin(phi_i+w) # z= z_i+r_i*sin(phi_i*w) p[i,2]=z_i+r_i*np.cos(phi_i+w) # z= z_i+r_i*sin(phi_i*w)
v=p[1]-p[0] v=p[1]-p[0]
#for y = 0..1: #for y = 0..1:
#v=v*y #v=v*y
@@ -621,9 +628,9 @@ class HelicalScan(MotionBase):
p=np.ndarray((param.shape[0], 3)) p=np.ndarray((param.shape[0], 3))
for i in range(2): for i in range(2):
(z_i, y_i, x_i, r_i, phi_i)=param[i] (z_i, y_i, x_i, r_i, phi_i)=param[i]
p[i,0]=x_i+r_i*np.cos(phi_i+w) # x= x_i+r_i*cos(phi_i+w)+cx p[i,0]=x_i+r_i*np.sin(phi_i+w) # x= x_i+r_i*cos(phi_i+w)+cx
p[i,1]=y_i # y= y_i p[i,1]=y_i # y= y_i
p[i,2]=z_i-r_i*np.sin(phi_i+w) # z= z_i+r_i*sin(phi_i*w) p[i,2]=z_i+r_i*np.cos(phi_i+w) # z= z_i+r_i*sin(phi_i*w)
v=p[1]-p[0] v=p[1]-p[0]
#for y = 0..1: #for y = 0..1:
#v=v*y #v=v*y
@@ -695,7 +702,8 @@ class HelicalScan(MotionBase):
#bias=np.absolute(f[0]/n) #bias=np.absolute(f[0]/n)
assert(np.imag(f[0])==0.) assert(np.imag(f[0])==0.)
bias=np.real(f[0]/n) bias=np.real(f[0]/n)
phase=np.angle(f[idx]) #phase=np.angle(f[idx]) #f(w)=bias+ampl*cos(w+phase)
phase=np.angle(f[idx]*1j) #f(w)=bias+ampl*sin(w+phase)
ampl=np.absolute(f[idx])*2/n ampl=np.absolute(f[idx])*2/n
return (bias,ampl,phase) return (bias,ampl,phase)
@@ -757,12 +765,12 @@ open forward
{W}={qW} {W}={qW}
{qW}={qW}*{d2r} //scale from 1000*deg to rad {qW}={qW}*{d2r} //scale from 1000*deg to rad
{p0_x}={x_0}+{r_0}*cos({phi_0}+{qW}) {p0_x}={x_0}+{r_0}*sin({phi_0}+{qW})
{p1_x}={x_1}+{r_1}*cos({phi_1}+{qW}) {p1_x}={x_1}+{r_1}*sin({phi_1}+{qW})
{p0_y}={y_0} {p0_y}={y_0}
{p1_y}={y_1} {p1_y}={y_1}
{p0_z}={z_0}-{r_0}*sin({phi_0}+{qW}) {p0_z}={z_0}+{r_0}*cos({phi_0}+{qW})
{p1_z}={z_1}-{r_1}*sin({phi_1}+{qW}) {p1_z}={z_1}+{r_1}*cos({phi_1}+{qW})
{scale}=({qFY}-({y_0}))/({y_1}-({y_0})) {scale}=({qFY}-({y_0}))/({y_1}-({y_0}))
{p0_x}={p0_x}+{scale}*({p1_x}-{p0_x}) {p0_x}={p0_x}+{scale}*({p1_x}-{p0_x})
@@ -801,12 +809,12 @@ open inverse
{qW}={W} {qW}={W}
{W}={W}*{d2r} //scale from 1000*deg to rad {W}={W}*{d2r} //scale from 1000*deg to rad
{p0_x}={x_0}+{r_0}*cos({phi_0}+{W}) {p0_x}={x_0}+{r_0}*sin({phi_0}+{W})
{p1_x}={x_1}+{r_1}*cos({phi_1}+{W}) {p1_x}={x_1}+{r_1}*sin({phi_1}+{W})
{p0_y}={y_0} {p0_y}={y_0}
{p1_y}={y_1} {p1_y}={y_1}
{p0_z}={z_0}-{r_0}*sin({phi_0}+{W}) {p0_z}={z_0}+{r_0}*cos({phi_0}+{W})
{p1_z}={z_1}-{r_1}*sin({phi_1}+{W}) {p1_z}={z_1}+{r_1}*cos({phi_1}+{W})
{sclY}=({Y}-({y_0}))/({y_1}-({y_0})) {sclY}=({Y}-({y_0}))/({y_1}-({y_0}))
{p_x}={p0_x}+{sclY}*({p1_x}-{p0_x}) {p_x}={p0_x}+{sclY}*({p1_x}-{p0_x})
@@ -1057,27 +1065,29 @@ if __name__=='__main__':
comm = PPComm(host=args.host) comm = PPComm(host=args.host)
gather = Gather(comm) gather = Gather(comm)
gpascii = comm.gpascii gpascii = comm.gpascii
#HelicalScanTests.calcParamSim()
hs=HelicalScan(comm, gather, args.verbose) hs=HelicalScan(comm, gather, args.verbose)
hsg=HelicalScanGui(hs)
#hs.test_find_rot_ctr() #hs.test_find_rot_ctr()
#hs.test_find_rot_ctr(n=5. ,per=1.,bias=2.31,ampl=4.12,phi=24.6) #hs.test_find_rot_ctr(n=5. ,per=1.,bias=2.31,ampl=4.12,phi=24.6)
fn='/tmp/helicalscan' fn='/tmp/helicalscan'
hs.load_rec(fn+'.npz') hs.load_rec(fn+'.npz')
#hsg.interactive_anim() hs.param[:4]+=np.pi/2.#add 90 deg
hsg=HelicalScanGui(hs);hsg.interactive_anim()
#while True:hsg.update_anim(0)
#hs.param = np.ndarray((2,5)) #hs.param = np.ndarray((2,5))
#hs.param[0]=(15,2,0,3,0)#(z_i, y_i, x_i, r_i,phi_i) #hs.param[0]=(15,2,0,3,0)#(z_i, y_i, x_i, r_i,phi_i)
#hs.param[1]=(15,4,0,3,0)#(z_i, y_i, x_i, r_i,phi_i) #hs.param[1]=(15,4,0,2,np.pi/4)#(z_i, y_i, x_i, r_i,phi_i)
#hsg.interactive_cx_cz_w_fy() hsg=HelicalScanGui(hs);hsg.interactive_cx_cz_w_fy()
#hsg=HelicalScanGui(hs);hsg.interactive_cx_cz_w_fy(manip=True)
#while True: hsg.update_cx_cz_w_fy() #for debug purpose #while True: hsg.update_cx_cz_w_fy() #for debug purpose
hsg.interactive_dx_dz_w_y() hsg=HelicalScanGui(hs);hsg.interactive_dx_dz_w_y()
while True: hsg.update_dx_dz_w_y() #for debug purpose #while True: hsg.update_dx_dz_w_y() #for debug purpose
return #return
#TODO: FE Digitizers PBPS117 timing not working! #TODO: FE Digitizers PBPS117 timing not working!