work on observer
This commit is contained in:
@@ -16,7 +16,7 @@ function [ssc]=StateSpaceControlDesign(mot)
|
|||||||
%
|
%
|
||||||
% https://www.youtube.com/watch?v=Lax3etc837U
|
% https://www.youtube.com/watch?v=Lax3etc837U
|
||||||
|
|
||||||
ssPlt=mot.ssPlt; %real plant (model of real plant)
|
ssPlt=mot.ssMdl;%ssPlt; %real plant (model of real plant)
|
||||||
ssPlt.Name='open loop plant';
|
ssPlt.Name='open loop plant';
|
||||||
ssMdl=mot.ssMdl;%ssMdl; %simplified model (observable,controlable) for observer
|
ssMdl=mot.ssMdl;%ssMdl; %simplified model (observable,controlable) for observer
|
||||||
ssMdl.Name='open loop model';
|
ssMdl.Name='open loop model';
|
||||||
@@ -139,7 +139,7 @@ function [ssc]=StateSpaceControlDesign(mot)
|
|||||||
Ts=1/5000; % 5kHz
|
Ts=1/5000; % 5kHz
|
||||||
ss_tz = c2d(ss_t,Ts);
|
ss_tz = c2d(ss_t,Ts);
|
||||||
[Atz,Btz,Ctz,Dtz]=ssdata(ss_tz );
|
[Atz,Btz,Ctz,Dtz]=ssdata(ss_tz );
|
||||||
ss_tz .Name='discrete obsvr ctrl';
|
ss_tz.Name='discrete obsvr ctrl';
|
||||||
% step answer on closed loop with disctrete observer controller:
|
% step answer on closed loop with disctrete observer controller:
|
||||||
t = 0:Ts:.05;
|
t = 0:Ts:.05;
|
||||||
figure();lsim(ss_tz ,ones(size(t)),t,[xm0 xm0]);title('step on closed loop with observer discrete');
|
figure();lsim(ss_tz ,ones(size(t)),t,[xm0 xm0]);title('step on closed loop with observer discrete');
|
||||||
|
|||||||
Binary file not shown.
143
matlab/testObserver.m
Normal file
143
matlab/testObserver.m
Normal file
@@ -0,0 +1,143 @@
|
|||||||
|
function [ssc]=testObserver(mot)
|
||||||
|
%http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlStateSpace
|
||||||
|
|
||||||
|
A = [ 0 1 0
|
||||||
|
980 0 -2.8
|
||||||
|
0 0 -100 ];
|
||||||
|
|
||||||
|
B = [ 0
|
||||||
|
0
|
||||||
|
100 ];
|
||||||
|
|
||||||
|
C = [ 1 0 0 ];
|
||||||
|
D=0;
|
||||||
|
|
||||||
|
%[A,B,C,D]=ssdata(mot.ssMdl)
|
||||||
|
%C=C(3,:);D=D(3);
|
||||||
|
|
||||||
|
Ap=A;Am=A;
|
||||||
|
Bp=B;Bm=B;
|
||||||
|
Cp=C;Cm=C;
|
||||||
|
Dp=D;Dm=D;Dt=D;
|
||||||
|
|
||||||
|
poles = eig(A);
|
||||||
|
disp(poles);
|
||||||
|
|
||||||
|
|
||||||
|
t = 0:0.01:2;
|
||||||
|
u = zeros(size(t));
|
||||||
|
x0 = [0.01 0 0];
|
||||||
|
%x0 = [0.1 0 0 0];
|
||||||
|
|
||||||
|
sys = ss(A,B,C,D);
|
||||||
|
|
||||||
|
[y,t,x] = lsim(sys,u,t,x0);
|
||||||
|
plot(t,y)
|
||||||
|
title('Open-Loop Response to Non-Zero Initial Condition')
|
||||||
|
xlabel('Time (sec)')
|
||||||
|
ylabel('Ball Position (m)')
|
||||||
|
|
||||||
|
p1 = -10 + 10i; p2 = -10 - 10i; p3 = -50;
|
||||||
|
K = place(A,B,[p1 p2 p3]);
|
||||||
|
sys_cl = ss(A-B*K,B,C,0);
|
||||||
|
lsim(sys_cl,u,t,x0);
|
||||||
|
xlabel('Time (sec)')
|
||||||
|
ylabel('Ball Position (m)')
|
||||||
|
|
||||||
|
p1 = -20 + 20i; p2 = -20 - 20i; p3 = -100;
|
||||||
|
K = place(A,B,[p1 p2 p3]);
|
||||||
|
sys_cl = ss(A-B*K,B,C,0);
|
||||||
|
lsim(sys_cl,u,t,x0);
|
||||||
|
xlabel('Time (sec)')
|
||||||
|
ylabel('Ball Position (m)')
|
||||||
|
|
||||||
|
|
||||||
|
t = 0:0.01:2;
|
||||||
|
u = 0.001*ones(size(t));
|
||||||
|
|
||||||
|
sys_cl = ss(A-B*K,B,C,0);
|
||||||
|
|
||||||
|
lsim(sys_cl,u,t);
|
||||||
|
xlabel('Time (sec)')
|
||||||
|
ylabel('Ball Position (m)')
|
||||||
|
axis([0 2 -4E-6 0])
|
||||||
|
|
||||||
|
V=-1./(Cm*(Am-Bm*K)^-1*Bm); %(from Lineare Regelsysteme2 (Glattfelder) page:173 )
|
||||||
|
lsim(sys_cl,V*u,t)
|
||||||
|
title('Linear Simulation Results (with Nbar)')
|
||||||
|
xlabel('Time (sec)')
|
||||||
|
ylabel('Ball Position (m)')
|
||||||
|
axis([0 2 0 1.2*10^-3])
|
||||||
|
op1 = -100;
|
||||||
|
op2 = -101;
|
||||||
|
op3 = -102;
|
||||||
|
|
||||||
|
L = place(A',C',[op1 op2 op3])';
|
||||||
|
|
||||||
|
At = [ A-B*K B*K
|
||||||
|
zeros(size(A)) A-L*C ];
|
||||||
|
Bt = [ B*V
|
||||||
|
zeros(size(B)) ];
|
||||||
|
Ct = [ C zeros(size(C)) ];
|
||||||
|
|
||||||
|
sys = ss(At,Bt,Ct,0);
|
||||||
|
lsim(sys,zeros(size(t)),t,[x0 x0]);
|
||||||
|
|
||||||
|
title('Linear Simulation Results (with observer)')
|
||||||
|
xlabel('Time (sec)')
|
||||||
|
ylabel('Ball Position (m)')
|
||||||
|
|
||||||
|
|
||||||
|
t = 0:1E-6:0.1;
|
||||||
|
x0 = [0.01 0.5 -5];
|
||||||
|
[y,t,x] = lsim(sys,zeros(size(t)),t,[x0 x0]);
|
||||||
|
|
||||||
|
n = 3;
|
||||||
|
e = x(:,n+1:end);
|
||||||
|
x = x(:,1:n);
|
||||||
|
x_est = x - e;
|
||||||
|
|
||||||
|
% Save state variables explicitly to aid in plotting
|
||||||
|
h = x(:,1); h_dot = x(:,2); i = x(:,3);
|
||||||
|
h_est = x_est(:,1); h_dot_est = x_est(:,2); i_est = x_est(:,3);
|
||||||
|
|
||||||
|
plot(t,h,'-r',t,h_est,':r',t,h_dot,'-b',t,h_dot_est,':b',t,i,'-g',t,i_est,':g')
|
||||||
|
legend('h','h_{est}','hdot','hdot_{est}','i','i_{est}')
|
||||||
|
xlabel('Time (sec)')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
%discrete
|
||||||
|
Ts=1/50; % deltatau std. frq. is 5kHz
|
||||||
|
%The discrete system works with sampling >100Hz,. the bigger the frequency the better the result
|
||||||
|
%With sampling = 80Hz hte system already becomes instable.
|
||||||
|
ss_t=ss(At,Bt,Ct,Dt);
|
||||||
|
figure();pzplot(ss_t)
|
||||||
|
ss_tz=c2d(ss_t,Ts);
|
||||||
|
figure();pzplot(ss_tz)
|
||||||
|
[Atz,Btz,Ctz,Dtz]=ssdata(ss_tz);
|
||||||
|
|
||||||
|
|
||||||
|
[Apz,Bpz,Cpz,Dpz]=ssdata(c2d(ss(Ap,Bp,Cp,Dp),Ts));
|
||||||
|
[Amz,Bmz,Cmz,Dmz]=ssdata(c2d(ss(Am,Bm,Cm,Dm),Ts));
|
||||||
|
|
||||||
|
|
||||||
|
Ao=Am-L*Cm;
|
||||||
|
Bo=[Bm L];
|
||||||
|
Co=K;
|
||||||
|
Do=zeros(size(Co,1),size(Bo,2));
|
||||||
|
|
||||||
|
[Aoz,Boz,Coz,Doz]=ssdata(c2d(ss(Ao,Bo,Co,Do),Ts));
|
||||||
|
|
||||||
|
|
||||||
|
%state space controller
|
||||||
|
ssc=struct();
|
||||||
|
for k=["Ts","At","Bt","Ct","Dt","Atz","Btz","Ctz","Dtz","Ap","Bp","Cp","Dp","Am","Bm","Cm","Dm","Ao","Bo","Co","Do","Apz","Bpz","Cpz","Dpz","Aoz","Boz","Coz","Doz","V","K","L"]
|
||||||
|
ssc=setfield(ssc,k,eval(k));
|
||||||
|
end
|
||||||
|
mdlName='testObserverSim';
|
||||||
|
open(mdlName);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
end
|
||||||
BIN
matlab/testObserverSim.slx
Normal file
BIN
matlab/testObserverSim.slx
Normal file
Binary file not shown.
Reference in New Issue
Block a user