optimize
This commit is contained in:
@@ -19,24 +19,32 @@ function DeltaTauOptimizer()
|
||||
%SIM2=[8 3; 9 3;8 4; 9 4];
|
||||
%SIM2=[9 4;9 0];
|
||||
%SIM2=[8 3; 9 3];
|
||||
SIM1=[9 1; 9 2; 9 3; 9 4; 9 5];
|
||||
if isempty(simData1)
|
||||
close all;
|
||||
simData1=ExecSim(mot{1},SIM1);
|
||||
end
|
||||
if isempty(simData2)
|
||||
close all;
|
||||
simData2=ExecSim(mot{2},SIM2);
|
||||
end
|
||||
%if isempty(simData2)
|
||||
% close all;
|
||||
% simData2=ExecSim(mot{2},SIM2);
|
||||
%end
|
||||
close all;
|
||||
%test()
|
||||
bodeSim(simData1);
|
||||
bodeSim(simData2);
|
||||
test()
|
||||
%bodeSim(simData1);
|
||||
%bodeSim(simData2);
|
||||
end
|
||||
|
||||
function test()
|
||||
global pb mot simData1 simData2;
|
||||
%pb=DeltaTauParam(mot{2},8,0);
|
||||
pb=DeltaTauParam(mot{2},9,0);
|
||||
pb=DeltaTauParam(mot{1},9,0);
|
||||
sim('DeltaTauSim');
|
||||
i=6;
|
||||
simData1(i).pb=pb;
|
||||
simData1(i).desPos_actPos=desPos_actPos;
|
||||
simData1=bodeSim(simData1);
|
||||
return
|
||||
%simData2(i).mot_mdl_param=SIM(i,:);
|
||||
%pb.C=[0.04877];
|
||||
%pb.D=[1 -0.9512];
|
||||
%pb.C=[1 -1.3236 6.2472 -11.8555 11.3067 -5.4188 1.0440];
|
||||
@@ -51,15 +59,9 @@ function test()
|
||||
tf1=tf([1 2*d1*w1 w1^2 ],[w1^2])
|
||||
tfs=tf0*tf1
|
||||
tfz=c2d(tfs,Ts)
|
||||
h=bodeplot(tfz,tfs);setoptions(h,'FreqUnits','Hz','Grid','on');
|
||||
pb.C=tfz.Numerator{1};
|
||||
pb.D=tfz.Denominator{1};
|
||||
sim('DeltaTauSim');
|
||||
i=2;
|
||||
%simData2(i).mot_mdl_param=SIM(i,:);
|
||||
simData2(i).pb=pb;
|
||||
simData2(i).desPos_actPos=desPos_actPos;
|
||||
simData2=bodeSim(simData2);
|
||||
%h=bodeplot(tfz,tfs);setoptions(h,'FreqUnits','Hz','Grid','on');
|
||||
%pb.C=tfz.Numerator{1};
|
||||
%pb.D=tfz.Denominator{1};
|
||||
|
||||
opt=tfestOptions;
|
||||
opt.Display='off';
|
||||
|
||||
@@ -10,8 +10,9 @@ function [pb]=DeltaTauParam(mot,mdl,param)
|
||||
'Ts', 2E-4, ... % 0.2ms=5kHz
|
||||
'MaxDac' ,2011.968, ...
|
||||
'MaxPosErr', 10000, ...
|
||||
'A',1,'B',1,'C',1,'D',1,'E',1,'F',1, ...
|
||||
'Kafb',0);
|
||||
'A',tf(1),'B',tf(1),'C_D',tf(1),'E',tf(1),'F',tf(1), ...
|
||||
'Kafb',0, ...
|
||||
'V',0,'Kfb',0);
|
||||
desc=sprintf('mot:%d mdl:',mot.id);
|
||||
switch mdl
|
||||
case 1
|
||||
@@ -44,6 +45,49 @@ function [pb]=DeltaTauParam(mot,mdl,param)
|
||||
switch param
|
||||
case 0 %scratch
|
||||
desc=desc+"scratch";
|
||||
pb.Kp=25;pb.Kvfb=350;pb.Ki=0.02;pb.Kvff=350;pb.Kaff=1/(curr2acc*(pb.Ts^2));pb.MaxInt=1000;
|
||||
%pure feed forward
|
||||
pb.Kp=0;pb.Kvfb=0;pb.Ki=0.02;pb.Kvff=0;pb.Kaff=1/(curr2acc*(pb.Ts^2));pb.MaxInt=1000;
|
||||
%pure feedback
|
||||
pb.Kp=25;pb.Kvfb=350;pb.Ki=0.02;pb.Kvff=0;pb.Kaff=0;pb.MaxInt=1000;
|
||||
|
||||
pl=[-300+350i -300-350i -2513];
|
||||
[Am,Bm,Cm,Dm]=ssdata(mot.ss_dq);
|
||||
K = place(Am,Bm,pl);
|
||||
V=-1./(Cm*(Am-Bm*K)^-1*Bm); %(from Lineare Regelsysteme2 (Glattfelder) page:173 )
|
||||
V=V(end);
|
||||
Kfb=K*(Cm^-1);
|
||||
pb.V=V;
|
||||
pb.Kfb=Kfb;
|
||||
pb.Kp=V;
|
||||
pb.B=tf(Kfb(3)/V);
|
||||
pb.Kvfb=Kfb(2)/pb.Ts;
|
||||
pb.Kvff=1*pb.Kvfb;%0;
|
||||
pb.Kafb=Kfb(1)/(curr2acc*(pb.Ts^2));
|
||||
pb.Kaff=1/(curr2acc*(pb.Ts^2))+pb.Kafb;%0;
|
||||
pb.Ki=0.002;
|
||||
pb.MaxInt=1000;
|
||||
|
||||
%https://ch.mathworks.com/help/control/ref/tf.html
|
||||
%feed forward filter attenuating high frequencies
|
||||
%fs=1/pb.Ts;%[n,d] = butter(6,fc/(fs/2));
|
||||
fc=125;%Hz
|
||||
[num,den] = butter(2,fc*pb.Ts*2,'low');
|
||||
Fz2=tf(num,den,pb.Ts);
|
||||
Fz=tf([1 0 0],den/sum(num),pb.Ts);
|
||||
h=bodeplot(Fz,Fz2);setoptions(h,'FreqUnits','Hz','Grid','on');
|
||||
|
||||
pb.F=Fz;
|
||||
% THE F FILTER HELPS TO NOT OVERSHOOT ON HIGH FREQUENCY TRAJECTORIES,
|
||||
% BUT THE INPUT TRAJECTORY DOES NOT CONTAIN THESE FREQUENCIES.
|
||||
% THEREFORE THE FILTERS IN THE CLOSED LOOP MUST BE TWEAKED!
|
||||
%tf([.2 .8],[1],pb.Ts,'variable','z^-1') = tf([.2 .8],[1 0],pb.Ts)
|
||||
%pb.A=tf([.0 1],[1 0],pb.Ts)
|
||||
|
||||
display(pb.B)
|
||||
display(pb.F)
|
||||
fprintf('Kp:%f Kvfb:%f\n',pb.Kp,pb.Kvfb);
|
||||
|
||||
case 1 %origin parameters
|
||||
desc=desc+"orig";
|
||||
pb.Kp=25;pb.Kvfb=400;pb.Ki=0.02;pb.Kvff=350;pb.Kaff=5000;pb.MaxInt=1000;
|
||||
@@ -63,13 +107,14 @@ function [pb]=DeltaTauParam(mot,mdl,param)
|
||||
pb.Kfb=Kfb;
|
||||
|
||||
pb.Kp=V;
|
||||
pb.B=Kfb(2)/V;
|
||||
pb.B=tf(Kfb(2)/V);
|
||||
pb.Kvfb=Kfb(1)/pb.Ts;
|
||||
pb.Kvff=pb.Kvfb;
|
||||
pb.Kaff=1/(curr2acc*(pb.Ts^2));
|
||||
pb.Ki=0.01; % lower
|
||||
pb.MaxInt=1000;
|
||||
fprintf('Kp:%f B:%f Kvfb:%f\n',pb.Kp,pb.B,pb.Kvfb);
|
||||
display(pb.B)
|
||||
fprintf('Kp:%f Kvfb:%f\n',pb.Kp,pb.Kvfb);
|
||||
case 4 %pole placement on ss_dq (simplified motion, simplified current loop)
|
||||
desc=desc+"pp ss\_dq";
|
||||
pl=[-300+350i -300-350i -2513];
|
||||
@@ -82,14 +127,44 @@ function [pb]=DeltaTauParam(mot,mdl,param)
|
||||
pb.Kfb=Kfb;
|
||||
|
||||
pb.Kp=V;
|
||||
pb.B=Kfb(3)/V;
|
||||
pb.B=tf(Kfb(3)/V);
|
||||
pb.Kvfb=Kfb(2)/pb.Ts;
|
||||
pb.Kvff=1*pb.Kvfb;
|
||||
pb.Kafb=Kfb(1)/(curr2acc*(pb.Ts^2));
|
||||
pb.Kaff=1*1/(curr2acc*(pb.Ts^2))+pb.Kafb;
|
||||
pb.Ki=0.01;
|
||||
pb.MaxInt=1000;
|
||||
fprintf('Kp:%f B:%f Kvfb:%f Kafb:%f\n',pb.Kp,pb.B,pb.Kvfb,pb.Kafb);
|
||||
display(pb.B)
|
||||
fprintf('Kp:%f Kvfb:%f Kafb:%f\n',pb.Kp,pb.Kvfb,pb.Kafb);
|
||||
case 5 % optimize higher gain and filter
|
||||
pl=[-600+750i -600-750i -2513];
|
||||
[Am,Bm,Cm,Dm]=ssdata(mot.ss_dq);
|
||||
K = place(Am,Bm,pl);
|
||||
V=-1./(Cm*(Am-Bm*K)^-1*Bm); %(from Lineare Regelsysteme2 (Glattfelder) page:173 )
|
||||
V=V(end);
|
||||
Kfb=K*(Cm^-1);
|
||||
pb.V=V;
|
||||
pb.Kfb=Kfb;
|
||||
pb.Kp=V;
|
||||
pb.B=tf(Kfb(3)/V);
|
||||
pb.Kvfb=Kfb(2)/pb.Ts;
|
||||
pb.Kvff=.15*pb.Kvfb;%0;
|
||||
pb.Kafb=Kfb(1)/(curr2acc*(pb.Ts^2));
|
||||
pb.Kaff=.2/(curr2acc*(pb.Ts^2))+pb.Kafb;%0;
|
||||
pb.Ki=0.002;
|
||||
pb.MaxInt=1000;
|
||||
%https://ch.mathworks.com/help/control/ref/tf.html
|
||||
%feed forward filter attenuating high frequencies
|
||||
%fs=1/pb.Ts;%[n,d] = butter(6,fc/(fs/2));
|
||||
fc=125;%Hz
|
||||
[num,den] = butter(2,fc*pb.Ts*2,'low');
|
||||
Fz2=tf(num,den,pb.Ts);
|
||||
Fz=tf([1 0 0],den/sum(num),pb.Ts);
|
||||
h=bodeplot(Fz,Fz2);setoptions(h,'FreqUnits','Hz','Grid','on');
|
||||
pb.F=Fz;
|
||||
display(pb.B)
|
||||
display(pb.F)
|
||||
fprintf('Kp:%f Kvfb:%f\n',pb.Kp,pb.Kvfb);
|
||||
end
|
||||
%pb.Kp=0.1;pb.Kvfb=0;pb.Ki=0.00;pb.Kvff=0;pb.Kaff=1/(1.548e04*(pb.Ts^2));pb.MaxInt=1000;
|
||||
%filter [z^0 z^-1 ... z^-n];
|
||||
@@ -144,13 +219,14 @@ function [pb]=DeltaTauParam(mot,mdl,param)
|
||||
pb.Kfb=Kfb;
|
||||
|
||||
pb.Kp=V;
|
||||
pb.B=Kfb(2)/V;
|
||||
pb.B=tf(Kfb(2)/V);
|
||||
pb.Kvfb=Kfb(1)/pb.Ts;
|
||||
pb.Kvff=pb.Kvfb;
|
||||
pb.Kaff=1/(curr2acc*(pb.Ts^2));
|
||||
pb.Ki=0.01; % lower
|
||||
pb.MaxInt=1000;
|
||||
fprintf('Kp:%f B:%f Kvfb:%f\n',pb.Kp,pb.B,pb.Kvfb);
|
||||
display(pb.B)
|
||||
fprintf('Kp:%f Kvfb:%f\n',pb.Kp,pb.Kvfb);
|
||||
case 4 %pole placement on ss_dq (simplified motion, simplified current loop)
|
||||
desc=desc+"pp ss\_dq";
|
||||
%pole(mot.ss_dq)
|
||||
@@ -164,14 +240,15 @@ function [pb]=DeltaTauParam(mot,mdl,param)
|
||||
pb.Kfb=Kfb;
|
||||
|
||||
pb.Kp=V;
|
||||
pb.B=Kfb(3)/V;
|
||||
pb.B=tf(Kfb(3)/V);
|
||||
pb.Kvfb=Kfb(2)/pb.Ts;
|
||||
pb.Kvff=1*pb.Kvfb;
|
||||
pb.Kafb=Kfb(1)/(curr2acc*(pb.Ts^2));
|
||||
pb.Kaff=1*1/(curr2acc*(pb.Ts^2))+pb.Kafb;
|
||||
pb.Ki=0.01;
|
||||
pb.MaxInt=1000;
|
||||
fprintf('Kp:%f B:%f Kvfb:%f Kafb:%f\n',pb.Kp,pb.B,pb.Kvfb,pb.Kafb);
|
||||
display(pb.B)
|
||||
fprintf('Kp:%f Kvfb:%f Kafb:%f\n',pb.Kp,pb.Kvfb,pb.Kafb);
|
||||
end
|
||||
%11.84Hz 0dB K=(11.84*2*np.pi)**2=5534.3 Ts=5kHz=.2ms
|
||||
%Kaff = 1/(Ts*Ts*K) = 1/((11.84*2*np.pi)**2/5000**2) = 4517.278506241803
|
||||
|
||||
Binary file not shown.
Reference in New Issue
Block a user